Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 33 (1995), S. 965-975 
    ISSN: 0887-6266
    Keywords: solubility ; permeation ; water vapor ; polyimide membranes ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Permeability, diffusion, and solubility coefficients for H2O vapor in four different 6FDA-based polyimides were determined at temperatures between 25 and 45°C and over a wide range of relative humidities. The solubility of H2O vapor in some of the polyimides studied can be described by the “dual-mode sorption” model whereas in other polyimides it is represented by the Flory-Huggins equation, which suggests that the latter polymers are plasticized by H2O. The solubility of H2O vapor in the polyimides decreases as the temperature is raised and increases with increasing polarity of the polymer. The diffusion coefficients for H2O in the polyimides studied either increase or pass through a weak maximum with increasing H2O activity, or concentration in the polymers. The latter behavior is probably due to a clustering of H2O molecules in the polyimides at higher H2O activities or concentrations. The diffusion coefficients for H2O decrease as the chain-packing density of the polyimides increases. The permeability coefficients for H2O vapor in 6FDA-based polyimide membranes either increase slightly or are constant as the H2O activity is increased. The experimental values of the permeability coefficients are consistent with the values determined from diffusion and solubility coefficients. The permeability of the polyimides to H2O vapor appears to be controlled by the solubility of H2O in the polymers. The polyimides studied exhibit a very high selectivity for H2O vapor relative to CH4, and therefore are potentially useful membrane materials for the dehydration of natural gas. ©1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...