Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The presynaptic Ca2+ concentration ([Ca]i) was evaluated by studying intracellular free Ca2+ with quin-2 and fura-2 in synaptosomal preparations. The synaptosomal preparations were purified with hyperosmotic (sucrose) and isoosmotic (Percoll) density gradient centrifugation. Synaptosomes are most viable in the heavier fractions of the density gradients. These synaptosomal fractions exhibit the lowest [Ca]i, [204 ± 2 nM for Percoll (C-band) synaptosomes, loaded at 30°C with the acetoxymethyl ester of fura-2 (fura-2-AM)], a high stability during prolonged incubations at 37°C, and a more potent response to membrane depolarization by elevated extracellular [K+]. [Ca]i measurement was critically dependent on dye loading, calibration, type of dye used, synaptosomal preparation, and incubation temperature (30° or 37°C). Loading quin-2 in synaptosomes inserts a considerable buffer component in the synaptosomal [Ca]i regulation, and consequently there is a quin-2 dependency of [Ca]i, independent of endogenous heavy metal ions. Use of fura-2 is preferable in synaptosomes, although above a critical fura2-AM/protein ratio during loading ester hydrolysis is not complete, giving rise to errors in [Ca]i determination. Ionomycin is a selective tool to detect the presence of partially hydrolyzed esters and saturate indicators in the cytosol with Ca2+ for calibration. Parallel studies on lactate dehydrogenase and fura-2 fluorescence indicate that synaptosomal viability is very sensitive to prolonged incubations at 37°C. This study shows the applicability of measuring steady-state [Ca]i and dynamic [Ca]i changes quantitatively in fura-2-loaded synaptosomes. The possible involvement of different synaptosomal pools to explain the divergence in [Ca]i between different preparations and the interpretation in physiological terms of [Ca]i measured in synaptosomes are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The presence and release of endogenous catechol-amines in rat and guinea pig hippocampal nerve terminals was studied by fluorimetric HPLC analysis. In isolated nerve terminals (synaptosomes) the levels and breakdown of endogenous catecholamines were determined and the release process was characterized with respect to its kinetics and Ca2+ and ATP dependence. Endogenous noradrenaline and dopamine, but not adrenaline, were detected in isolated hippocampal nerve terminals. For dopamine both the levels and the amounts released were more than 100-fold lower than those for noradrenaline. In suspension, released endogenous catecholamines were rapidly broken down. This could effectively be blocked by monoamine oxidase inhibitors, Ca2+-free conditions, and gluthatione. The release of both noradrenaline and dopamine was highly Ca2+ and ATP dependent. Marked differences were observed in the kinetics of release between the two catecholamines. Noradrenaline showed an initial burst of release within 10 s after K+ depolarization. The release of noradrenaline was terminated after approximately 3 min of K+ depolarization. In contrast, dopamine release was more gradual, without an initial burst and without clear termination of release within 5 min. It is concluded that both catecholamines are present in nerve terminals in the rat hippocampus and that their release from (isolated) nerve terminals is exocytotic. The characteristics of noradrenaline release show several similarities with those of other classical transmitters, whereas dopamine release characteristics resemble those of neuropeptide release in the hippocampus but not those of dopamine release in other brain areas. It is hypothesized that in the hippocampus dopamine is released from large, dense-cored vesicles, probably colocalized with neuropeptides.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The role of protein kinase C (PKC) in modulating the release of the octapeptide cholecystokinin (CCK-8) was investigated in rat hippocampal nerve terminals (synaptosomes). The PKC-activating phorbol ester 4β-phorbol 12,13-dibutyrate (β-PDBu) dose dependently (5–5,000 nM) increased CCK-8 release in a strictly Ca2+-dependent way. This effect was observed only when synaptosomes were stimulated with the K+A channel blocker 4-aminopyridine (4-AP; 1 mM) but not with KCI (10–30 mM). The PDBu-induced exocytosis of CCK-8 was completely blocked by the two selective PKC inhibitors chelerythrine and calphostin-C and was not mimicked by α-PDBu, an inactive phorbol ester. In addition, an analogue of the endogenous PKC activator diacylglycerol, oleoylacetylglycerol, dose dependently increased CCK-8 exocytosis. β-PDBu (50–100 nM) also stimulated the 4-AP-evoked Ca2+-dependent release of the classic transmitter GABA, which co-localizes with CCK-8 in hippocampal interneurons. As a possible physiological trigger for PKC activation, the role of the metabotropic glutamate receptor was investigated. However, the broad receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid did not stimulate, but instead inhibited, both the CCK-8 and the GABA exocytosis. In conclusion, presynaptic PKC may stimulate exocytosis of distinct types of colocalizing neurotransmitters via modulation of presynaptic K+ channels in rat hippocampus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Cystatin C (CSTC), a cysteine protease inhibitor, has been implicated in the processes of neuronal degeneration and repair of the nervous system. Using serial analysis of gene expression (SAGE), we recently identified CSTC as one of the genes that are overexpressed after electrically induced status epilepticus (SE). In the present study, Western blot analysis extended the SAGE results, showing increased CSTC protein in the hippocampus and entorhinal cortex. Immunocytochemistry revealed an increase in CSTC expression in glial cells, which was first apparent 24 h after onset of SE, and persisted for at least 3 months. Double immunolabelling confirmed that both reactive astrocytes, and activated microglia were CSTC immunopositive. Within the hippocampus, up-regulation was also observed in neuronal cells within one day after SE. Up-regulation was still present in hippocampal pyramidal cells and surviving interneurons of chronic epileptic rats (3–8 months post-SE). This study demonstrates that status epilepticus leads to a widespread and persistent up-regulation of CSTC in the hippocampus and entorhinal cortex, which may represent an intrinsic neuroprotective mechanism in the course of epileptogenesis that may counteract progression of the disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The hippocampal formation communicates with the neocortex mainly through the adjacent entorhinal cortex. Neurons projecting to the hippocampal formation are found in the superficial layers of the entorhinal cortex and are largely segregated from the neurons receiving hippocampal output, which are located in deep entorhinal layers. We studied the communication between deep and superficial entorhinal layers in the anaesthetized rat using field potential recordings, current source density analysis and single unit measurements. We found that subiculum stimulation was able to excite entorhinal neurons in deep layers. This response was followed by current sinks in superficial layers. Both responses were subject to frequency dependent facilitation, but not depression. Selective blockade of deep layer responses also abolished subsequent superficial layer responses. This clearly demonstrates a functional deep-to-superficial layer communication in the entorhinal cortex, which can be triggered by hippocampal output. This pathway may provide a means by which processed hippocampal output is integrated or compared with new incoming information in superficial entorhinal layers, and it constitutes an important link in the process of re-entrance of activity in the hippocampal–entorhinal network, which may be important for consolidation of memories or retaining information for short periods.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-6792
    Keywords: Chaos ; Nonlinear dynamics ; Intracranial EEG ; Temporal lobe epilepsy ; Ictal propagation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Purpose: An understanding of the principles governing the behavior of complex neuronal networks, in particular their capability of generating epileptic seizures implies the characterization of the conditions under which a transition from the interictal to the ictal state takes place. Signal analysis methods derived from the theory of nonlinear dynamics provide new tools to characterize the behavior of such networks, and are particularly relevant for the analysis of epileptiform activity.Methods: We calculated the correlation dimension, tested for irreversibility, and made recurrence plots of EEG signals recorded intracranially both during interictal and ictal states in temporal lobe epilepsy patients who were surgical candidates.Results: Epileptic seizure activity often, but not always, emerges as a low-dimensional oscillation. In general, the seizure behaves as a nonstationary phenomenon during which both phases of low and high complexity may occur. Nevertheless a low dimension may be found mainly in the zone of ictal onset and nearby structures. Both the zone of ictal onset and the pattern of propagation of seizure activity in the brain could be identified using this type of analysis. Furthermore, the results obtained were in close agreement with visual inspection of the EEG records.Conclusions: Application of these mathematical tools provides novel insights into the spatio-temporal dynamics of “epileptic brain states”. In this way it may be of practical use in the localization of an epileptogenic region in the brain, and thus be of assistance in the presurgical evaluation of patients with localization-related epilepsy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...