Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1009
    Keywords: Restoration ; Wetland ; Lake ; Eutrophication ; Florida ; Phosphorus ; Vollenweider
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Lake Apopka in Florida, USA, is a large (area=124 km2), hypertrophic (mean total phosphorus=0.220 g/m3; mean chlorophylla=60 mg/m3) lake, with a large sedimentary store of available P (1635 × 106 g P). Phosphorus loading from floodplain farms (132 × 106 g P/yr) has been the primary cause of eutrophication. Assuming elimination of farm P loading, the Vollenweider model predicts a decline in equilibrium P concentration from 0.270 to 0.024 g/m3, if the P sedimentation coefficient (σ) remains constant. It is likely, however, that the value for σ will fall with the elimination of farm loading due to unabated internal P loading from the sediments. Under a worst-case scenario (σ=0), the model predicts that exportation of P from the lake via wetland filtration will greatly accelerate the lake's recovery. Recirculation of lake water through a 21-km2, created wetland and elimination of farm P loading is projected to result in a negative P balance for the lake (−23 × 106 g P/yr) leading to depletion of P stores in the lake in about 60 yr. The estimated cost of the project, $20 million, is less than 3% of the estimated cost of dredging. A 3.65-km2 demonstration project is underway to test and refine the wetland filtration technique. We believe the technique could be cost-effective for other hypertrophic lakes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...