Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 28 (1977), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract— Administration of oestrogen (oestradiol-17β or oestradiol-17β-benzoate) to ovariectomized (OVX) rats for 1–4 weeks results in an approx 30% decrease in the activity of monoamine oxidase (MAO) in the basomedial-hypothalamus (BM-Hyp) and corticomedial-amygdala (CM-Amy) but not in cerebral cortex. Further investigation shows that (1) decreased MAO activity in the BM-Hyp and CM-Amy occurs only in Type A MAO (serotonin as substrate) and does not occur in Type B MAO (phenylethylamine as substrate); (2) decreased MAO activity does not occur when a single large dose of oestrogen is given i. v. or when homogenates from oestrogen treated rats are mixed with homogenates from OVX rats suggesting that direct enzyme inhibition is not responsible for the change in activity; (3) oestrogen administration to OVX rats increases the rate constant of degradation for MAO in BM-Hyp and CM-Amy but not in cerebral cortex as determined in turnover studies using pargyline, an irreversible inhibitor of MAO. The increased rate of degradation results in shorter half lives (t 1/2) for MAO in the BM-Hyp and CM-Amy of oestrogen treated rats. In OVX rats the t 1/2 is 9.8 days in BM-Hyp and 12.7 days in CM-Amy. Oestrogen administration results in a t 1/2 of 7.6 days in BM-Hyp and 7.8 days in CM-Amy. The possible relationship between oestrogen dependent decreased MAO activity and estrogen dependent lordosis behavior is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 23 (1974), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract— Ovariectomized female rats were treated daily with oestradiol-17β benzoate for intervals up to one week and enzyme activities were measured in the pituitary and various brain regions. Brain regions were selected for study on the basis of their previously demonstrated content of putative oestradiol receptor sites. (1) Pituitary showed oestrogen-dependent increases in glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH) and lactic dehydrogenase (LDH), and no change in NADP+-dependent isocitric dehydrogenase (ICDH), NADP+-dependent malic dehydrogenase (MDH) or hexokinase (HK). MDH and ICDH were elevated in whole hypothalamus. Enzyme activities did not change significantly in whole amygdala, cerebral cortex, or hippocampus. (2) Sub-regions of the preoptic area, hypothalamus and amygdala were dissected to obtain more highly concentrated populations of cells containing putative oestrogen receptor sites. In the basomedial sub-region of hypothalamus, activities of MDH, ICDH and G6PDH were elevated by oestrogen treatment. In the corticomedial sub-region of amygdala, MDH and ICDH were elevated by oestrogen treatment. No change was observed in any of the six enzymes in medial preoptic area. (3) Increases in enzyme activities were related to the total in vivo dose of oestradiol benzoate given. (4) Hypophysectomy or adrenalectomy did not prevent the enzymatic responses to oestrogen. (S) Oestrogen added directly to the enzyme incubation medium did not change enzyme activities. (6) Weight loss in ovariectomized rats due to reduced food intake did not increase enzyme activities. (7) In the pituitary, good correlation was obtained between the known receptor binding properties of various oestrogenic and non-oestrogenic steroids and the elevation in G6PDH activity. The results indicate that oestradiol acts directly to cause changes in activities of some brain and pituitary enzymes. The possibility is discussed that these changes may result from oestrogen interaction with putative receptor sites found in pituitary and certain brain regions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 743 (1994), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 743 (1994), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 42 (1984), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Addition of vasoactive intestinal peptide (VIP) to brain homogenates increased the activity of choline acetyltransferase (ChAT) but not that of acetylcholinesterase or glucose-6-phosphate dehydrogenase. Activity of ChAT was increased in the anterior hypothalamus and in the dorsal and ventral hippocampus, but not in the parietal cortex or posterior hypothalamus. Increased activity occurred rapidly after VIP addition to homogenates and was maximal at 10 -7M concentration. Kinetic analysis indicates that the Vmax of the enzyme is increased and the Km for choline, but not acetyl-coenzyme A, is decreased in the presence of VIP. Results support a possible VIP-cholinergic interaction in the CNS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 40 (1983), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We measured the distribution of molecular forms of acetylcholinesterase (AChE) in muscles of a song bird, the zebra finch, and found a pattern similar to those reported in other vertebrates. As in other species, the most rapidly sedimenting form of the enzyme decreases to barely detectable levels following denervation. In the muscles of the syrinx, castration causes a large decrease in AChE activity, but has little or no effect on the relative abundance of AChE forms. This suggests that the number of AChE catalytic sites is changing without affecting the distribution of catalytic sites among the molecular forms. This is in marked contrast with the effect of denervation in the syrinx, which causes changes in the distribution of activity, as well as in total activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...