Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1203
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract A patient with perinatal lethal osteogenesis imperfecta (OI) type II has been studied in order to identify the causative mutation. By analysis of the type I collagen produced by cultured fibroblasts from the patient, the defect was mapped to α1 cyanogen bromide peptide 7, a region corresponding to 271 amino acid residues of either the α1(I) or α2(I) collagen chains. Polymerase chain reaction (PCR) amplification of the corresponding region of the α1(I) mRNA followed by single-strand conformation polymorphism analysis of restriction enzyme digestions of the PCR products allowed further mapping of the mutation to a small region of COL1A1. A heterozygous transversion of G to T within the last glycine codon of exon 32 was identified by DNA sequence analysis. This resulted in the substitution of glycine-565 by a valine residue, disrupting the repeating Gly-Xaa-Yaa sequence that is obligatory for correct formation of the collagen molecule. The mutation was shown to have occurred de novo and is thought to result in the OI phenotype.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1203
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract We have investigated one member of a family with dominant osteogenesis imperfecta type IV through three generations. In protein-chemical studies of cultured fibroblasts derived from the proband, collagen I was overmodified, with normal processing of procollagen 1, normal thermal stability, and a cyanogen bromide peptide map that suggested a C-terminal location of the structural abnormality in the collagen triple helix. Sequencing of the gene encoding the α2(I) chain of collagen I (COL1A2) indicated a nine base-pair deletion of nucleotides 3418–3426. When a polymerase chain reaction product containing the nucleotides in question was electrophoresed in a 12% polyacrylamide gel, two bands with a difference in size of nine base pairs could be shown. Sequencing of the lower molecular weight band confirmed the deletion of the nine base pairs involving codons 1003–1006 of COL1A2. The deletion introduced aSfiI restriction site that was used for confirmation of the deletion in genomic DNA from the proband. The deletion resulted in the removal of three amino acids (Gly-Pro-Pro), but this did not disrupt the Gly-X-Y sequence of the collagen triple helix, as is often the case in the more common glycine substitutions. We discuss the ways in which this deletion could result in osteogenesis imperfecta.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...