Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 342-343 (July 2007), p. 881-884 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1436-2449
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Summary The effect of copolycondensation temperature on the monomer reactivity ratios of bis(4-hydroxybutyl) terephthalate (BHBT) and bis(2-hydroxyethyl) terephthalate (BHET) was investigated at 260, 270, and 280 °C, in the presence of titanium tetrabutoxide as a catalyst. Adopting 2nd order kinetics to polycondensation, the rate constants of polycondensation of BHBT and BHET, k 11 and k 22, were calculated to be 2.58, 1.30; 3.87, 2.24; and 5.29, 4.06 min−1. In addition, the rate constants k 12 and k 21 of cross reactions could be determined as 0.91, 3.00; 1.49, 4.42; and 2.13, 5.85 min−1 from a proton nuclear magnetic resonance spectroscopic analysis. The monomer reactivity ratios of BHBT were much larger than those of BHET, indicating the block nature of the copolycondensation, but the differences between monomer reactivity ratios were decreased with increasing polycondensation temperature, indicating that a probability of randomization was increased.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 35 (1997), S. 55-67 
    ISSN: 0887-624X
    Keywords: VPi ; ADMVN ; AIBN ; syndiotacticity-rich HMW PVA ; PVA microfibrillar fiber ; Pn ; saponification ; PVPi ; conversion ; initiation rate ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Vinyl pivalate (VPi) was polymerized in bulk by ultraviolet-ray initiation at low temperatures using 2,2′-azobis(2,4-dimethylvaleronitrile) (ADMVN) and 2,2'-azobis(isobutyronitrile) (AIBN) as photoinitiators. High molecular weight (HMW) poly(vinyl pivalate) (PVPi), having a number-average degree of polymerization (Pn) of 13,000-28,000, was obtained at conversions below 30% and converted by saponification to a syndiotacticity-rich HMW poly(vinyl alcohol) (PVA) microfibrillar fiber with Pn of 7300-18,300, syndiotactic diad (S-diad) and triad contents of ∼ 64% and ∼ 39%, respectively, and crystal melting temperature (Tm) of ∼ 249°C. ADMVN gave higher Pn than AIBN. On the other hand, conversion was smaller with the former than with the latter, and it was found that the initiation rate of ADMVN was lower than that of AIBN. Pn of PVA was constant while Pn of the precursor PVPi increased with increasing conversion. The syndiotacticity, Tm and thermal stability of PVA obtained from PVPi were much superior to those of PVA derived from poly(vinyl acetate) prepared under the same polymerization conditions. Polymerization of VPi at lower temperatures gave PVA with higher syndiotacticity. © 1997 John Wiley & Sons, Inc.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 62 (1996), S. 473-480 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The kinetics of polycondensation and copolycondensation reactions were investigated using bis(4-hydroxybutyl) terephthalate (BHBT) and bis (2-hydroxyethyl) terephthalate (BHET) as monomers. BHBT was prepared by ester interchange reaction of dimethyl terephthalate and 1,4-butanediol. BHBT and BHET were polymerized at 270°C in the presence of titanium tetrabutoxide (TBT) as a catalyst. Applying second-order kinetics for polycondensation, the rate constants of polycondensation of BHBT and BHET, k11 and k22, were calculated as 3.872 min-1 and 2.238 min-1, respectively. BHBT and BHET were also copolymerized at 270°C using TBT. The rate constants of crossreactions in the copolycondensation of BHBT and BHET, k12 and k21, were obtained by using the results obtained from a proton nuclear magnetic resonance (1H-NMR) spectroscopy and a high-performance liquid chromatography (HPLC). It was found that the rate constants during the copolycondensation of BHBT and BHET at 270°C decreased in the order k21 〉 k11〉 k22 〉 k12 and the monomer reactivity ratio of BHBT was four or five times larger than that of BHET. In calculating the crossreactions, the method by the 1H-NMR spectroscopy gave more accurate results than that by the HPLC. © 1996 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...