Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Increased damage to proteins by glycation, oxidation and nitration has been implicated in neuronal cell death leading to Alzheimer's disease (AD). Protein glycation, oxidation and nitration adducts are consequently formed. Quantitative screening of these adducts in CSF may provide a biochemical indicator for the diagnosis of AD. To assess this, we measured 11 glycation adducts, three oxidation adducts and a nitration adduct, determining both protein adduct residues and free adducts, in CSF samples of age-matched normal healthy subjects (n = 18) and subjects with Alzheimer's disease (n = 32). In CSF protein, the concentrations of 3-nitrotyrosine, Nɛ-carboxymethyl-lysine, 3-deoxyglucosone-derived hydroimidazolone and N-formylkynurenine residues were increased in subjects with Alzheimer's disease. In CSF ultrafiltrate, the concentrations of 3-nitrotyrosine, methylglyoxal-derived hydroimidazolone and glyoxal-derived hydroimidazolone free adducts were also increased. The Mini-Mental State Examination (MMSE) score correlated negatively with 3-nitrotyrosine residue concentration (p 〈 0.05), and the negative correlation with fructosyl-lysine residues just failed to reach significance (p = 0.052). Multiple linear regression gave a regression model of the MMSE score on 3-nitrotyrosine, fructosyl-lysine and Nɛ-carboxyethyl-lysine residues with p-values of 0.021, 0.031 and 0.052, respectively. These findings indicate that protein glycation, oxidation and nitration adduct residues and free adducts were increased in the CSF of subjects with Alzheimer's disease. A combination of nitration and glycation adduct estimates of CSF may provide an indicator for the diagnosis of Alzheimer's disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Deposition of cross-linked insoluble protein aggregates such as amyloid plaques is characteristic for Alzheimer's disease. Microglial activation by these extracullar deposits has been proposed to play a crucial role in functional degeneration as well as cell death of neurones. A sugar-derived post-translational modification of long-lived proteins, advanced glycation endproducts (AGEs), activate specific signal transduction pathways, resulting in the up-regulation of various pro-inflammatory signals such as cytokines [interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α)] and inducible nitric oxide synthase (iNOS). Our goal was to study AGE-activated signal transduction pathways involved in the induction of pro-inflammatory effectors in the murine microglial cell line N-11. Chicken egg albumin-AGE (CEA-AGE), used as model AGE, induces nitric oxide (NO), TNF-α and IL-6 production. The AGE receptor, RAGE, and the transcription factor, nuclear factor kappa B (NF-κB), appear to be involved in all pathways, since a neutralizing RAGE antibody and a peptide inhibiting NF-κB translocation down-regulated NO, TNF-α and IL-6 production. NO and TNF-α, but not IL-6 production appear to be regulated independently, since NOS inhibitors did not decrease TNF-α secretion and a neutralizing TNF-α antibody did not reduce NO production, while employment of NOS inhibitors reduced significantly the secretion of IL-6. Inhibition of the MAP-kinase-kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) pathway, but not that of mitogen-activated protein kinase-p38 (MAPK-p38), reduced NO, TNF-α and IL-6 significantly, suggesting that simultaneous activation of the first two pathways is necessary for the AGE-induced induction of these pro-inflammatory stimuli.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Increased expression and altered processing of the amyloid precursor protein (APP) and generation of β-amyloid peptides is important in the pathogenesis of amyloid plaques in Alzheimer's disease (AD). Transgenic Tg2576 mice overexpressing the Swedish mutation of human APP exhibit β-amyloid deposition in the neocortex and limbic areas, accompanied by gliosis and dystrophic neurites. However, murine plaques appear to be less cross-linked and the mice show a lower degree of inflammation and neurodegeneration than AD patients. ‘Advanced glycation endproducts (AGEs)’, formed by reaction of proteins with reactive sugars or dicarbonyl compounds, are able to cross-link proteins and to activate glial cells, and are thus contributing to plaque stability and plaque-induced inflammation in AD. In this study, we analyze the tissue distribution of AGEs and the pro-inflammatory cytokines IL-1β and TNF-α in 24-month-old Tg2576 mice, and compare the AGE distribution in these mice with a younger age group (13 months old) and a typical Alzheimer's disease patient. Around 70% of the amyloid plaque cores in the 24-month-old mice are devoid of AGEs, which might explain their solubility in physiological buffers. Plaque associated glia, which express IL-1β and TNF-α, contain a significant amount of AGEs, suggesting that plaques, i.e. Aβ as its major component, can induce intracellular AGE formation and the expression of the cytokines on its own. In the 13-month-old transgenic mice, AGEs staining can neither be detected in plaques nor in glial cells. In contrast, AGEs are present in high amounts in both plaques and glia in the human AD patient. The data obtained in this show interesting differences between the transgenic mouse model and AD patients, which should be considered using the transgenic approach to test therapeutical strategies to eliminate plaques or to attenuate the inflammatory response in AD.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: β-Amyloid (Aβ) plaques are characteristic hallmarks of Alzheimer's disease (AD). In AD, it has been suggested that activation of microglial cells might be the link between Aβ deposition and neuronal degeneration. Activated microglia are associated with senile plaques and produce free radicals and inflammatory cytokines. However, it is still not clear whether Aβ needs a prestimulated environment to exert its proinflammatory potential. Advanced glycation endproducts (AGEs), protein-bound oxidation products of sugars, have been shown to accumulate in senile plaques and could induce a silent but chronic inflammation in the AD brain. We tested whether Aβ acts as an amplifier of a submaximal proinflammatory response initiated by exposure to chicken egg albumin-AGE, lipopolysaccharide or interferon-γ. Synthetic Aβ was used to produce three different samples (Aβ-fibrilar; Aβ-aggregated; Aβ-AGE), which were characterized for β-sheeted fibrils by the thioflavin-T test and electron microscopy. As markers of microglial activation, nitric oxide, interleukin-6, macrophage-colony stimulation factor and tumour necrosis factor-α production was measured. All three Aβ samples alone could not induce a detectable microglial response. The combination of Aβ preparations, however, with the coinducers provoked a strong microglial response, whereby Aβ-AGE and fibrilar Aβ were more potent inflammatory signals than aggregated Aβ. Thus, Aβ in senile plaques can amplify microglial activation by a coexisting submaximal inflammatory stimulus. Hence, anti-inflammatory therapeutics could either target the primary proinflammatory signal (e.g. by limiting AGE-formation by AGE inhibitors or cross-link breakers) or the amplifyer Aβ (e.g. by limiting Aβ production by β- or γ-secretase inhibitors).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Advanced glycation endproducts (AGEs) accumulate on long-lived protein deposits including β-amyloid plaques in Alzheimer's disease (AD). AGE-modified amyloid deposits contain oxidized and nitrated proteins as markers of a chronic neuroinflammatory condition and are surrounded by activated microglial and astroglial cells. We show in this study that AGEs increase nitric oxide production by induction of the inducible nitric oxide synthase (iNOS) on the mRNA and protein level in the murine microglial cell line N-11. Membrane permeable antioxidants including oestrogen derivatives (e.g. 17β-oestradiol) thiol antioxidants (e.g. (R+)-α-lipoic acid) and Gingko biloba extract EGb 761, but not phosphodiesterase inhibitors such as propentophylline, prevent the up-regulation of AGE-induced iNOS expression and NO production. These results indicate that oxygen free radicals serve as second messengers in AGE-induced pro-inflammatory signal transduction pathways. As this pharmacological mechanism is not only relevant for Alzheimer's disease, but also for many chronic inflammatory conditions, such membrane-permeable antioxidants could be regarded not only as antioxidant, but also as potent therapeutic anti-inflammatory drugs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] Advanced glycation end products (AGEs) contribute to changes in protein conformation, loss of function, and irreversible crosslinking. Using a library of dipeptides on cellulose membranes (SPOT library), we have developed an approach to systematically assay the relative reactivities of amino acid ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    European archives of psychiatry and clinical neuroscience 249 (1999), S. S68 
    ISSN: 1433-8491
    Keywords: Key words Ageing ; Advanced glycation endproducts ; Alzheimer’s dementia ; Amyloid ; lipid peroxidation ; Oxidative stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Alzheimer’s disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death and formation of amyloid plaques and neurofibrillary tangles (NFTs) NFTs are composed of hyperphosphorylated tau protein, and senile plaques contain aggregates of the β-peptide. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress during the course of the disease. Advanced glycation endproducts (AGEs), which are formed by a non-enzymatic reaction of glucose with long-lived protein deposits, are potentially toxic to the cell, are present in brain plaques in AD, and its extracellular accumulation in AD may be caused by an accelerated oxidation of glycated proteins. The microtubuli-associated protein tau is also subject to intracellular AGE formation. AGEs participate in neuronal death causing direct (chemical) radical production: Glycated proteins produce nearly 50-fold more radicals than non-glycated proteins, and indirect (cellular) radical production: Interaction of AGEs with cells increases oxidative stress. During aging cellular defence mechanisms weaken and the damages to cell constituents accumulate leading to loss of function and finally cell death. The development of drugs for the treatment of AD remains at a very unsatisfying state. However, pharmacological approaches which break the vicious cycles of oxidative stress and neurodegeneration offer new opportunities for the treatment of AD. Theses approaches include AGE-inhibitors, antioxidants, and anti-inflammatory substances, which prevent radical production. AGE inhibitors might be able to stop formation of AGE-modified β-amyloid deposits, antioxidants are likely to scavenge intracellular and extracellular superoxide radicals and hydrogen peroxide before these radicals damage cell constituents or activate microglia, and anti-inflammatory drugs attenuating microglial radical and cytokine production.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...