Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 8 (1985), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. The response of the adenylate energy charge (AEC) ratio and the adenine nucleotide pools to nutrients was studied in two perennial marsh plant species. Adenine nucleotide levels and the AEC ratio were measured in Spartina patens (Alton) Muhl. plants which were grown in the greenhouse at various nutrient levels as well as in Spartina alterniflora Loisel. transplants removed from the field but maintained in marsh soil amended with different nutrient supplements. In addition, adenine nucleotide concentrations were measured in both species in their natural environment and compared with that of the same species grown in the greenhouse with a complement of nutrients.The addition of nutrients stimulated an increase in the individual and total adenylate pools and the AEC ratio. Low nutrient levels resulted in extremely reduced adenylate pools. The AEC ratio was significantly affected in some instances, but did not decrease proportionately with the adenine nucleotide level and was typically maintained at values above 0.60. The adenine nucleotide concentrations measured in the leaves of both species were significantly higher in greenhouse-grown plants compared to field plants, but the AEC ratios were not significantly different.Because the AEC ratio in plants can be significantly affected by nutrient level. AEC response in field investigations should be planned with attention to the potential effect of dissimilar nutrient levels among study sites.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 62 (1984), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Seasonal changes in adenylate levels and adenylate energy charge (AEC) of four perennial marsh plant species growing in their natural environment were monitored. Leaf tissue was collected bimonthly from Spartina patens (Aiton) Muhl., S. cynosuroides (L.) Roth., S. alterniflora Loisel. and Distichlis spicata (L.) Greene using a method designed for field sampling of adenine nucleotides. The AEC of all four plant species exhibited a strong seasonal variability. Comparison with above-ground biomass (g m−2) demonstrated a close relationship between AEC and growth. The AEC ratios peaked in early spring or summer (0.78-0.85) and then declined in late summer and early fall. The ATP/ADP and ATP/AMP ratios also fluctuated seasonally and in a pattern similar to that of the AEC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 103 (1995), S. 63-72 
    ISSN: 1432-1939
    Keywords: Freshwater marsh community ; Saltwater intrusion ; Post-dieback recovery ; Species composition ; Soil characteristics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Greenhouse mesocosms of freshwater marsh vegetation were exposed to a simulated saltwater intrusion event followed by a recovery period during which water levels and interstitial water salinity were adjusted over a range of conditions. Virtually all above-ground vegetation, including the three dominant species, Sagittaria lancifolia L., Leersia oryzoides (L.) Swartz, and Panicum hemitomon Schultes, was killed by the initial saltwater intrusion event. P. hemitomon did not recover, but S. lancifolia and L. oryzoides, as well as many of the other species initially present, exhibited some ability to recover depending on post-saltwater intrusion conditions. Increasingly harsh recovery conditions (for freshwater marsh vegetation), including more reduced soil conditions, higher interstitial salinities, and higher interstitial sulfide concentrations were associated with decreased live above-ground biomass and species richness. The effect of elevated salinity on vegetative recovery became more pronounced under flooded conditions. This experiment illustrates that the response of a freshwater marsh community to the long-term disturbance effect of a transient saltwater intrusion event will be strongly influenced by post-intrusion salinity and water levels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Anaerobic metabolism ; Adenylate energy charge ; Root specific gravity ; Spartina patens ; Waterlogging
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Soil waterlogging responses were examined in three Spartina patens populations along a steep flooding gradient in coastal Louisiana. Root anatomy and physiological indicators of anaerobic metabolism were examined to identify and compare flooding responses in dune, swale and marsh populations, while soil physicochemical factors were measured to characterize the three habitats. Soil waterlogging increased along the gradient from dune to marsh habitats and was accompanied by increases in root porosity (aerenchyma). Aerenchyma in marsh roots was apparently insufficient to provide enough oxygen for aerobic respiratory demand, as indicated by high root alcohol dehydrogenase activities and low energy charge ratios. Patterns of root metabolic indicators suggest that dune and swale roots generally respired aerobically, while anaerobic metabolism was important in marsh roots. However, in each population, relatively greater soil waterloging was accompanied by differences in enzyme activities leading to malate accumulation. In dune and swale roots under these circumstances, depressed adenylate energy charge ratios may have been the result of an absence of increased ethanol fermentation. These trends suggest that: 1) Aerenchyma formation was an important, albeit incomplete, long-term adaptation to the prevalent degree of soil waterlogging. 2) All populations adjusted root metabolism in response to a relative (short-term) increase in soil waterlogging.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...