Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 35 (1988), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . Trichophrya collini has a polygonal, dorsoventrally flattened body (up to 75 μm diam.), with capitate tentacles arranged in 1–3 rows within peripheral fascicles. There is a central polymorphic macronucleus, an associated micronucleus, and numerous peripheral contractile vacuoles with ventral discharge pores. The cell has a multilayered cortex and the cytoplasm contains suctorian organelles such as crescentic bodies, elongate dense bodies, and haptocysts. The highly contractile tentacles have an axoneme with an outer ring of 24 microtubules separated into six groups and an inner ring of six curved lamellae, each with five microtubules. The lamellae at the distal and proximal ends of the axoneme are arranged in a helix, and the outer ring microtubules are joined in a distal connective sheath. In the apical knob of the tentacle, the haptocysts are borne on a central capsule, Reproduction is by endogenous budding to produce a single oval-shaped swarmer, with equatorial ciliature, which metamorphoses within 3 h. These observations suggest that this organism, previously known as Heliophrya collini Saedeleer & Tellier, is synonymous with Platophrya rotunda Gönnert, Craspedophrya rotunda Rieder, and Heliophrya rotunda Matthes. Its endogenous mode of budding assigns it to the genus Trichophrya. but it is distinct from Trichophrya rotunda Hentschel, and should be reclassified to Trichophrya collini (Saedeleer & Tellier).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 31 (1984), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Morphological, ultrastructural, and reproductive studies of a suctorian suggest its designation as Trichophrya rotunda (Hentschel) as distinct from Heliophrya collini, Heliophrya rotunda, and Craspedophrya rotunda of previous descriptions. Trichophrya rotunda has a round or slightly irregular, dorsoventrally flattened body (37–73 μm) with peripheral tentacles arranged randomly within 4–13 fascicles, a central polymorphic macronucleus, and 7–21 peripheral contractile vacuoles with ventrally terminating discharge pores. The tentacles are contractile and highly flexible. The axoneme consists of microtubules forming seven curved lamellae and 35 outer microtubules, which are separated into seven groups. Deviations from this prevailing pattern include helically arranged lamellae at the points of apical and basal termination, outer ring microtubules joined in an apical connective sheath, and the presence of a basal connective sheath near the point of axoneme termination. In common with other suctorians the cortex is multilayered and the cytoplasm contains characteristic organelles such as crescentic bodies and elongate dense bodies, but the haptocysts have unusual radial projections. Trichophrya rotunda feeds readily on motile vorticellids, attachment of the tentacular knobs occurring at their trochal band. Reproduction is endogenous, producing a single, slightly flattened, oval-shaped swarmer with five equatorial kineties. The swarmer cytoplasm shows no evidence of primordia of tentacle axonemes nor any stages in development of the tentacle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 148 (1989), S. 33-40 
    ISSN: 1615-6102
    Keywords: Contraction ; Electrical stimulation ; Microtubules ; Suctoria ; Trichophrya
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Extracellular electrical stimulation ofTrichophrya collini induces tentacle contraction. There is an inverse relationship between stimulus duration and voltage in producing a threshold response, and at a set voltage the response is graded depending upon duration of stimulus. With a threshold stimulus (6.3 V, 1,000 ms) the response is restricted to the anodal tentacles, and with increasing stimulus intensity or duration the response spreads to the cathodal and finally the intermediate tentacles. With a stimulus of 15 V, 1,000 ms the mean tentacle length is reduced to 28% of the control within 1.2 s. Recordings using intracellular microelectrodes give resting membrane potentials between −10mV and −40mV. Intracellular hyperpolarizing currents of 1nA and 2nA induce tentacle contraction to 50% and 25% of the control length respectively, but depolarizing currents do not induce contraction. SEM studies show that in the initial stages of contraction, only the central region of the tentacle shaft becomes shortened, but on full contraction shortening involves the whole of the shaft. TEM studies show that on contraction no depolymerization of tentacle axoneme microtubules occurs, but that the entire axoneme passes down into the body cytoplasm. These observations are discussed in relation to the possible mechanisms of tentacle contraction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0886-1544
    Keywords: microtubule bending ; cytoskeletal assembly ; cochlea ; mouse ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Mature inner pillar cells in the mammalian organ of Corti are curved through about 60°, where they arch over adjacent epithelial cells and the apex of an intercellular space called the tunnel of Corti. This report deals with changes in microtubule organization that are associated with cell bending and tunnel formation during morphogenesis of the mouse organ of Corti.A large bundle of up to 3,000 microtubules assembles in each inner pillar cell. Microtubule rearrangement occurs about 5 days after bundle assembly begins. The lumen of each initially straight hollow tube-shaped microtubule bundle is occluded as the bundle becomes more compact and elliptical in cross section. This event anticipates the once-only bending which subsequently occurs between particular levels (abut 9-19 μm) below the top of a bundle as it curves into its final shape about 2 days later. Microtubule rearrangement presumably facilitates bending which is effected in the plane of lest mechanical resistance parallel to the short axis of a bundle's elliptical cross-sectional profile.Precocious bending of bundles has been induced about 1.5 days in advance of the natural event. Abnormal positioning of these prematurely curved bundles indicates that bending is effected by a contractile mechanism located within bundles rather than being a response to externally applied forces. The potential importance of such microtubule-associated contractions for active modulation of the vibratory response in the cochlea during hearing is considered. © 1993 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...