Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Mechanics of Cohesive-frictional Materials 3 (1998), S. 291-303 
    ISSN: 1082-5010
    Keywords: poroelasticity ; isotropic damage ; brittle geomaterials ; enhanced consolidation ; saturated geomaterials ; computational modelling ; indentation of geomaterials ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper examines consolidation behaviour of saturated geomaterials with a matrix component which is susceptible to damage. Finite-element-based computational model accounts for the alteration in both the deformability and permeability characteristics of the porous material due to damage evolution. The isotropic damage criteria governing the evolution of elastic stiffness and hydraulic conductivity parameters are characterized by the dependency of the damage variable on the distortional strain invariant. The computational procedure is utilized to evaluate the extent to which the time-dependent axisymmetric indentation behaviour of a rigid circular punch on a poroelastic half-space can be influenced by the damage evolution in the porous skeleton. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...