Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 88 (1988), S. 5076-5085 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The ionization potential of small metal and dielectric spheres is considered in different frameworks: classical, semiclassical, and quantum mechanical density functional approach. Classical calculations give conflicting results, and the generally accepted result for the ionization potential of a metal sphere of radius R: WI(R)=bulk work function+(3/8)q2/R is shown to be wrong, resulting from the classical image potential too close to the metal surface. Using appropriate cutoff to the image potential, the result WI(R)=bulk work function+(1/2)q2/R (previously obtained from solvation energy considerations) is recovered. Experimental results on relatively large particles are in agreement with the latter result. For very small clusters, deviations of experimental results from this classical behavior are shown by a density functional calculation to arise from quantum mechanical effects. These are first the spilloff of the electronic wave functions beyond the cluster edge and secondly from exchange and correlation contributions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 95 (1991), S. 9024-9027 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The ionization potential I(R) of small metal spheres (of radius R) as well as the electronic chemical potential μ(R) in such particles are considered within a three-parameter variational local-density-functional calculation. The asymptotic (R→∞) deviations of I(R) and μ(R) from their bulk values behave as C/R and Cμ/R, respectively, where within the computational accuracy C+Cμ=0.5. These results are quantitatively similar to those obtained from a recent variational calculation by Engel and Perdew (EP), and identify the origin of the deviation of C from its classical value of 0.5 in the size dependence of μ(R). While EP show that this size dependence originates from the gradient terms in the energy functional, we find that its magnitude results from a delicate balance between different contributions. The classical limit C=0.5 is approached when both Z and R are large, where Z is the number of electrons involved in the transition. These results also lead to the resolution of an apparent paradox recently described by van Staveren et al.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 93 (1990), S. 6226-6238 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Variational calculation based on a continuum dielectric model, and numerical simulations based on the RWK2-M water potential and on a pseudopotential for the electron–water interaction, are used to evaluate excitation energies and optical spectra for bound interior states of an excess electron in water clusters and in bulk water. Additionally, optical data for surface states are obtained from numerical simulations. The simulation approach uses adiabatic dynamics based on the quantum-classical time-dependent self-consistent field (TDSCF) approximation and the fast-Fourier transform (FFT) algorithm for solving the Schrödinger equation. Both approaches predict very weak or no cluster size dependence of the excitation spectrum for clusters that support interior solvated electron states. For an electron attached to the cluster in a surface localization mode, bound excited states exist for most nuclear configurations of clusters down to (H2O)−18, and the corresponding excitation energy is strongly shifted to the red relative to that associated with stable internal states in larger clusters. Binding and excitation energies associated with surface states are about half the value of these quantities for interior states. The present variational continuum dielectric theory is in relatively good agreement with the simulation results on the size dependence of the relative stability of interior states. However, it strongly underestimates the vertical excitation energy of the solvated electron. It is suggested that optical spectroscopy of excess electrons in water clusters could serve as a sensitive probe of the transition from surface to interior localization modes as the number of water molecules in the cluster is increased.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 99 (1995), S. 9337-9339 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 96 (1992), S. 2965-2967 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...