Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 125 (1968), S. 329-365 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: Embryonic chick myocardium (stages 8+ to 12-) was studied by light and electron microscopy. The myocardium, which is initially comprised of radially oriented cells with large intercellular spaces gradually becomes more tightly packed. Intercellular spaces decrease and the cells assume a circumferential orientation. Myocardial cells remain epithelial throughout formation of the functional tubular heart and specialized epithelial junctions (apical junctional complex or terminal bars) undergo modification to form intercalated discs. Embryonic myocardial cells contain large amounts of free ribosomes and particulate glycogen, the latter often associated with portions of granular reticulum. Unlike developing skeletal muscle. The amount of granular reticulum contained in the myocardial cell cytoplasm is large and, along with a hypertrophied Golgi apparatus, suggests that these cells may have a secretory function. These organelles persist during the initial period of fibril formation. Myofibrils apparently form from non filamentous precursor material and not by alignment of sequentially synthesized components.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 0002-9106
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin
    Notizen: Development of chick and rat endocardial cushions (cardiac mesenchyme) was studied histologically (using Nomarski differential interference optics on living and unfixed tissue), ultrastructurally (scanning and transmission electron microscopy), cytochemically (using acidified dialyzed iron as a visual probe for polyanionic material) and autoradiographically (using 35S) to elucidate the origin of the mesenchyme, the morphologic sequences leading to cushion formation and secretion of sulfated glycosaminoglycans, if any, by migrating mesenchymal cells. Cushion formation was similar for both species. Mesenchymal cells appeared initially, in 16- to 18-somite embryos, beneath the endothelium (which lacked a basal lamina) of the future atrioventricular canal and outflow tract. The cytoplasm of cushion mesenchymal cells was structurally similar to the endothelium; probably these cells arose by proliferation of the endothelium. Mitotic figures among the “seeded” cells were also numerous. Cushion cells were initially attached to the endothelium by desmosomes but acquired motile apparatus (pseudopodia and filopodia containing microtubules and microfilamentous bundles). Serial sectioning of successively-aged embryos (20-44 somites) indicated a centrifugal migratory direction. Interaction of the cell processes with extracellular matrix suggested that the latter was used as a migratory substrate. Contact of the advancing wedge of cushion cells with the myocardium produced no alteration in cell structure or mitotic activity. Localization of hyaluronidase-sensitive, dialyzed iron (DI) precipitates in 250-nm Golgi vacuoles and hyaluronidase-sensitive 35S-engendered silver grains over cushion cells indicated that this tissue contributed sulfated macromolecules to the matrix. Localization of hyaluronidase-labile, DI material in coated, endocytic like vesicles and caveolae also suggested potential modification or conditioning of the matrix by migrating mesenchymal cells. Altogether the study established loci in developing cushions where disruption of the developmental sequence could engender valvular or septal defects.
    Zusätzliches Material: 3 Tab.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...