Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 95 (1991), S. 9095-9114 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 95 (1991), S. 1012-1014 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 95 (1991), S. 5170-5181 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 3251-3251 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 89 (1988), S. 5044-5069 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Equilibrium and nonequilibrium molecular dynamics computer simulations have been used to study the time dependence of solvation in water. The systems investigated consisted of monatomic ions immersed in large spherical clusters of ST2 water. Relaxation of the solvation energy following step junction jumps in the solute's charge, dipole moment, and quadrupole moment have been determined from equilibrium molecular dynamics (MD) simulations under the assumption of a linear solvation response. The relaxation times observed differ substantially depending on the type of multipole jump and the charge/size ratio of the solute. These results could not be quantitatively understood on the basis either of continuum or molecular theories of solvation dynamics currently available. Even the qualitative picture of a distribution of relaxation times which monatonically increases with distance away from the solute is not correct for the systems studied. This lack of agreement is partially explained in terms of the structured environment of the first solvation shell of aqueous solutes. However, translational mechanisms of polarization decay and effects due to the finite distribution of charge within solvent molecules, which should be operative in less structured solvents as well, also contribute to deviations from theoretical predictions. The validity of a linear response approach has been examined for the case of charge jumps using nonequilibrium simulations. The observed dynamics are not generally independent of the size of the charge jump and thus linear response theories are not strictly applicable. In most cases, however, predictions based on a linear response calculation using the equilibrium dynamics of the appropriate reference system still provide a reasonable description of the actual nonequilibrium dynamics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 95 (1991), S. 9219-9241 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have simulated the solvation of ions in a solvent consisting of point dipoles which undergo diffusive reorientation while translationally fixed to the sites of a cubic lattice. The simplicity of this model allows us to thoroughly explore how the energetics and dynamics of solvation depend on factors such as solute charge, solvent polarity, and number of solvent molecules. Some of the main features observed are as follows. The orientational response of first solvation shell dipoles saturates for moderate solute charges, resulting in a nonlinear dependence of the reaction potential on solute charge. This nonlinearity is to a good approximation independent of solvent polarity and can be rationalized on the basis of a simple phenomenological model. One effect of the nonlinear solvent response is to cause solvation free energy wells of the sort considered in electron transfer theories to be significantly anharmonic. Surprisingly, this deviation from harmonic behavior has little apparent impact on solvation barriers to charge transfer. The time dependence of the solvation response deviates substantially from exponential behavior in the more polar systems studied. Solvation times (1/e times of the solvation response) are directly related to the magnitudes of fluctuations in the solvation potential. The dynamics of solvation for times ≤t1/e can therefore be understood in terms of purely static correlations between solvent molecules. Dynamical interparticle correlations are only important in determining the longer time behavior of the solvation response. In contrast to the long-ranged character of the solvation energy, only 20–30 solvent molecules are required to produce solvation times characteristic of bulk solvent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 2084-2103 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Computer simulations of the solvation of monatomic ions in acetonitrile are used to investigate dynamical aspects of solvation in polar aprotic solvents. The observed dynamics depend significantly on solute charge and on which multipole moment of the solute is perturbed. In all cases, the solvation response has a two-part character. One part consists of a fast initial relaxation and attendant oscillations, both of which occur on a time scale of 0.1–0.2 ps. The initial response is well fit by a Gaussian function and accounts for ∼80% of the total relaxation. The second dynamical component occurs on a much slower, ∼1 ps time scale, and accounts for the remainder of the relaxation. The fast response results from small amplitude inertial dynamics of solvent molecules within the confines of their instantaneous environment. The slow component reflects larger amplitude motions involving the breakup and reorganization of these local environments, especially in the first solvation shell of the solute. Comparison of the observed solvation dynamics to predictions of available theories points out the inadequacy of the latter due to their neglect of inertial parts of the solvent dielectric response.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 89 (1988), S. 875-881 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The results of time-resolved Stokes shift measurements are compared to a molecular theory of ionic solvation dynamics recently solved by Rips, Klafter, and Jortner [J. Chem. Phys. 88, 3246 (1988)]. Although the theoretical predictions show only semiquantitative agreement with experiment, this molecularly based model provides a satisfying framework for understanding the large departures observed from the behavior predicted by simple continuum treatments of solvation dynamics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 89 (1988), S. 3519-3534 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The influence of an inhomogeneous dielectric response on the dynamics of solvation of ions and dipoles is investigated. Solvent models considered include discrete shell models as well as models in which the solvent dielectric constant varies continuously as a function of distance from a spherical solute. The effect of such dielectric inhomogeneity is to introduce additional, slower relaxation times into the solvation response when compared to the homogeneous case. For all models studied, the deviation of the average relaxation time from that predicted for a homogeneous continuum solvent increases as the dielectric constant and the length parameter, which specifies the rapidity of approach to bulk behavior, increase. For a given solvent model the solvation response to a change in a point dipole moment is slower than the response to a charge jump. The continuum results are compared to a recent molecular model based on the mean spherical approximation. The comparison suggests that deviations from homogeneous continuum behavior in the molecular model can be accounted for by inhomogeneity of the solvent dielectric constant extending only over the first solvation shell. Predictions of inhomogeneous continuum models are also compared to experimental data. Both the observed dependence of average relaxation time on dielectric constant, and the detailed time dependence of the relaxation in high dielectric constant solvents can be rationalized on the basis of such models.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 98 (1993), S. 6431-6436 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In this article we examine the validity of the "inverted snowball' picture of solvation dynamics using results of simulations of an idealized model solvent. The solvent consists of point dipoles which undergo rotational Brownian motion while fixed to the sites of a simple cubic lattice. In this system we observe a much more complex distance dependence of the solvation response than assumed in the inverted snowball picture. These results indicate that the intermolecular correlations responsible for solvation do not allow for any useful spatial decomposition of the response and so point to the inadequacy of such a description for understanding solvation dynamics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...