Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 67 (1963), S. 699-703 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 95 (1991), S. 6806-6837 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: An efficient algorithm is given to find the Blum and Høye mean spherical approximation (MSA) solution for mixtures of hard-core fluids with multi-Yukawa interactions. The initial estimation of the variables is based on the asymptotic high-temperature behavior of the fluid. From this initial estimate only a few Newton–Raphson iterations are required to reach the final solution. The algorithm consistently yields the unique thermodynamically stable solution, whenever it exists, i.e., whenever the fluid appears as a single, homogeneous phase. For conditions in which no single phase can appear, the algorithm will declare the absence of solutions or, less often, produce thermodynamically unstable solutions. A simple criterion reveals the instability of those solutions. Furthermore, this Yukawa-MSA algorithm can be used in a most simple way to estimate the onset of thermodynamic instability and to predict the nature of the resulting phase separation (whether vapor–liquid or liquid–liquid). Specific results are presented for two binary multi-Yukawa mixtures. For both mixtures, the Yukawa interaction parameters were adjusted to fit, beyond the hard-core diameters σ, Lennard-Jones potentials. Therefore the potentials studied, although strictly negative, included a significant repulsion interval. The characteristics of the first mixture were chosen to produce a nearly ideal solution, while those of the second mixture favored strong deviations from ideality. The MSA algorithm was able to reflect correctly their molecular characteristics into the appropriate macroscopic behavior, reproducing not only vapor–liquid equilibrium but also liquid–liquid separations. Finally, the high-density limit of the fluid phase was determined by requiring the radial distribution function to be non-negative. A case is made for interpreting that limit as the fluid–glass transition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 95 (1991), S. 6838-6848 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Monte Carlo (MC) simulations are used to determine the properties of two different binary multi-Yukawa mixtures studied previously through a quasianalytic Yukawa-MSA (mean spherical approximation) algorithm [Arrieta, Jedrzejek, and Marsh, J. Chem. Phys. 95 XXXX (1991)]. These mixtures are composed of spherical hard-core molecules with multi-Yukawa interactions fitted (beyond the core diameters σLJij) to Lennard-Jones potentials, including thus a significant repulsion (negative slope) interval. The characteristics of the first mixture were chosen to produce a nearly ideal solution, while those of the second mixture (large size difference between components, weak unlike-particle attractions) favored nonideal behavior. For a variety of compositions, densities (in the liquid range), and temperatures, the following properties are determined: configurational energy, pressure, and chemical potentials. The latter were obtained through a new implementation of Widom's particle insertion method. This simple implementation allowed the calculation of chemical potentials at high densities, where the usual procedures tend to fail. An analysis of the standard deviations and of the internal consistency of the MC data was used to confirm the general reliability of the simulation results. The good general agreement found between MC and MSA leads to the conclusion that the Yukawa-MSA quasianalytic algorithm provides not only a convenient but an accurate description of dense fluid mixtures, both ideal and nonideal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 59 (1988), S. 193-194 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: This note presents designs for two inexpensive, magnetic circulating pumps. The first pump is designed for corrosive fluids over wide ranges of temperature, to 700 K, and pressure, to 200 MPa, and for flow rates to 6 cm3/s. The second pump is designed primarily for gases at temperatures to 500 K, pressures from 6 kPa to 20 MPa, and flow rates to 60 cm3/s. Each pump consists of a simple cylinder and piston with a central flow channel and gate operated by sample inertia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of chemical & engineering data 33 (1988), S. 288-292 
    ISSN: 1520-5134
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physical Chemistry 23 (1972), S. 65-92 
    ISSN: 0066-426X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 86 (1987), S. 3607-3626 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: An efficient numerical algorithm is given to find the Blum and Høye mean spherical approximation (MSA) solution for binary mixtures of hard-core fluids with one-Yukawa interactions. The initial estimation of the variables is achieved by partial linearization (based on known, physical asymptotic behaviors) of the system of nonlinear equations which result from the Blum and Høye method. The complete procedure is at least one order of magnitude faster than that recently outlined by Giunta et al. More importantly, it always seems to converge to the physical solution (if it exists). We delimit, for several specific mixtures, the density-temperature region where no real solution is possible. This corresponds, following Waisman's interpretation, to thermodynamic conditions for which vapor–liquid or liquid–liquid separation occurs. The dependency of the MSA solutions on the Yukawa exponent z is studied in detail. For high values of z, adequate for generalized mean spherical approximation (GMSA) applications, we propose an accurate linear approximation, and we relate it to the solutions given by Giunta et al. For equal-sized, symmetric, equimolar binary mixtures, we show that Baxter's factorized version of the Ornstein–Zernike equation, including the factor correlation functions, can be decoupled. We also find, for equal-sized mixtures, that one of the approximations recently proposed by Jedrzejek et al. using an effective potential method is in very good agreement with our exact (MSA) results. Finally, a theoretical analysis shows that if the Yukawa amplitudes satisfy K12=(K11K22)1/2, the coefficients Dij of the factor correlation functions outside the core are related as follows: D1i/K1i =D2i/K2i, for i=1,2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of solution chemistry 9 (1980), S. 805-807 
    ISSN: 1572-8927
    Keywords: Electrical conductivity ; electrolytes ; calibration standards ; potassium chloride
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract In a recent paper in this Journal, Saulnier and Barthel presented results for the electrolytic conductivity of 0.01 D potassium chloride solutions which they measured in a new type of conductance cell capable of absolute measurements at 0, 18 and 25°C. Their results disagreed by more than they expected from the results of Jones and Bradshaw at 18 and 25°C after they corrected the Jones and Bradshaw results to the absolute ohm and to the IPTS 1968. However their conversion was in error. The correct conversion is given and a recomparison is made with the Jones and Bradshaw results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 8 (1987), S. 649-662 
    ISSN: 1572-9567
    Keywords: alkane ; congruence ; corresponding states ; density ; mixtures ; viscosity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Viscosities and densities of the n-alkanes, hexane, heptane, octane, nonane, decane, dodecane, tetradecane, hexadecane, and tetracosane, were measured for temperatures from 303 to 338 K. Viscosities were measured using a standard Utube Ostwald viscometer; a pycnometer was used to measure both pure alkane and mixture densities. Results for the binary system n-hexadecane + n-octane at 318.16, 328.16, and 338.16 K are presented here, and comparisons with selected correlating equations are made.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 9 (1988), S. 47-59 
    ISSN: 1572-9567
    Keywords: alkane ; corresponding states ; density ; Grunberg and Nissan equation ; liquid ; mixtures ; viscosity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract This paper is the second in a series of viscosity and density studies on multicomponent mixtures of n-alkanes from 303 to 338 K. Reported here are the results of binary mixtures of n-tetracosane + n-octane as well as quaternary mixtures of n-tetracosane + n-octane + n-decane + n-hexane at 318.16, 328.16, and 338.16 K. Viscosities were determined using a standard U-tube Ostwald viscometer, and densities were determined using a flask-type pycnometer. Empirical relations tested include the Grunberg and Nissan equation and the method of corresponding states. In addition, comparisons were made regarding the behavior of this quaternary system and homologous binary mixtures of n-hexadecane + n-octane and n-tetracosane + n-octane at the same temperatures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...