Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Extremophiles 3 (1999), S. 247-251 
    ISSN: 1433-4909
    Keywords: Key wordsThermus thermophilus ; Thermophiles ; Hydrothermal vents ; Taxonomy ; Marine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We examined a single, non-spore-forming, aerobic, thermophilic strain that was isolated from a deep-sea hydrothermal vent in the Guaymas Basin at a depth of 2000 m and initially placed in a phenetic group with Thermus scotoductus (X-1). We identified this deep-sea isolate as a new strain belonging to Thermus thermophilus using several parameters. DNA–DNA hybridization under stringent conditions showed 74% similarity between the deep-sea isolate and T. thermophilus HB-8T (T = type strain). Phenotypic characteristics, such as the utilization of carbon sources, hydrolysis of different compounds, and antibiotic sensitivity were identical in the two strains. The polar lipids composition showed that strain Gy1211 belonged to the genus Thermus. The fatty acids composition indicated that this strain was related to the marine T. thermophilus strain isolated from the Azores. The new isolate T. thermophilus strain Gy1211 grew optimally at 75°C, pH 8.0, and 2% NaCl. A hydrostatic pressure of 20 MPa, similar to the in situ hydrostatic pressure of the deep-sea vent from which the strain was isolated, had no effect on growth. Strain HB-8T, however, showed slower growth under these conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1433-4909
    Keywords: Key words Heat-shock protein ; Barophile ; Thermococcus barophilus ; Pressure ; Hyperthermophile
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The whole-cell protein inventory of the deep-sea barophilic hyperthermophile Thermococcus barophilus was examined by one-dimensional SDS gradient gel electrophoresis when grown under different pressure conditions at 85°C (T opt). One protein (P60) with a molecular mass of approximately 60 kDa was prominent at low pressures (0.3 MPa hydrostatic pressure and 0.1 MPa atmospheric pressure) but not at deep-sea pressures (10, 30, and 40 MPa). About 17 amino acids were sequenced from the N-terminal end of the protein. Sequence homology analysis in the GenBank database showed that P60 most closely resembled heat-shock proteins in some sulfur-metabolizing Archaea. A high degree of amino acid identity (81%–93%) to thermosome subunits in Thermococcales strains was found. Another protein (P35) with molecular mass of approximately 35.5 kDa was induced at 40 MPa hydrostatic pressure but not under low-pressure conditions. No amino acid sequence homology was found for this protein when the 40 amino acids from the N-terminal end were compared with homologous regions of proteins from databases. A PTk diagram was generated for T. barophilus. The results suggest that P habitat is about 35 MPa, which corresponds to the in situ pressure where the strain was obtained.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...