Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Phanerochaete chrysosporium ; DNA transformation ; Basidiomycete ; Adenine biosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A clone containing the Phanerochaete chrysosporium ade1 gene was isolated from a λEMBL3 genomic library using the ade5 gene encoding aminoimidazole ribonucleotide synthetase, from Schizophyllum commune, as a probe. A 6.0 kb fragment incorporating the ade1 gene was subcloned into pUC18 (pADE1) and used to transform the P. chrysosporium ade1 auxotrophic strain. Transformation frequencies were similar to those obtained previously with the S. commune ade5 gene; however, homologous transformants arose earlier than heterologous transformants. The transformants were mitotically and meiotically stable and Southern blot analysis indicated that the plasmid, pADE1, integrated ectopically in single or multiple copies. The pADE1 insert was mapped for restriction sites and the approximate location of the ade1 gene within the insert was determined.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 123 (1979), S. 319-321 
    ISSN: 1432-072X
    Keywords: Basidiomycete ; Vanillic acid ; Vanillate hydroxylase ; Monooxygenase ; Methoxy-p-hydroquinone ; Lignin biodegradation ; Phanerochaete chrysosporium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A soluble enzyme fraction from Phanerochaete chrysosporium catalyzed the oxidative decarboxylation of vanillic acid to methoxy-p-hydroquinone. The enzyme, partially purified by ammonium sulfate precipitation, required NADPH and molecular oxygen for activity. NADH was not effective. Optimal activity was displayed between pH 7.5–8.5. Neither EDTA, KCN, NaN3, nor o-phenanthroline (5 mM) were inhibitory. The enzyme was inducible with maximal activity displayed after incubation of previously grown cells with 0.1% vanillate for 30h.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-072X
    Keywords: Phanerochaete chrysosporium ; Lignin degradation ; Veratryl alcohol ; Secondary metabolism ; Mutants ; Phenol oxidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A pleiotropic mutant of Phanerochaete chrysosporium 104-2 lacking phenol oxidase and unable to form fruit bodies and a revertant strain 424-2 were isolated after UV mutagenesis. Strains 104-2 and 424-2 had no apparent dysfunction in primary metabolism with glucose as a carbon source. Unlike the wild type strain and strain 424-2, strain 104-2 was unable to evolve 14CO2 from 14C ring, side chain and 3-O-14C-methoxy labeled lignin. In addition, strain 104-2 was unable to evolve 14CO2 from a variety of lignin model compounds including 14C-4′-methoxy labeled veratrylglycerol-β-guaiacyl (V) ether, γ-14C-guaiacylglycerol-β-guaiacyl ether (VI), as well as 1-(14C-4′-methoxy, 3′-methoxyphenyl)1,2 propene (III) and 1-(14C-4′-methoxy-3′-methoxyphenyl) 1,2 dihydroxypropane (IV). The addition of peroxidase/H2O2 to cultures of strain 104-2 did not alter its capacity to degrade the labeled lignins. A variety of unlabeled lignin model compounds previously shown to be degraded by the wild type organism including β-aryl ether dimers and diaryl propane dimers were also not degraded by the mutant 104-2. The revertant strain 424-2 regained the capacity to degrade these compounds. The substrates described are degraded by oxygen requiring system(s) expressed during the secondary phase of growth, suggesting this pleiotropic mutant is possibly defective in the onset of postprimary metabolism. The inability of the mutant to produce the secondary metabolite veratryl alcohol and to elaborate enzymes in the veratryl alcohol biosynthetic pathway supports this hypothesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...