Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Myelin isolated from the central nervous system of Xenopus tadpoles was characterized biochemically and compared with Xenopus frog and mammalian myelins. Xenopus tadpole myelin contains the characteristic protein and lipid components of mammalian myelin, although quantitative differences exist. The biochemical composition of Xenopus tadpole myelin suggests that it is an immature form of XePnopus frog myelin. Basic protein and proteolipid protein are prominent components of Xenopus myelin, but isolated tadpole myelin contains a greater proportion of higher molecular weight proteins than Xenopus frog or mature mammalian myelin. The basic protein has a higher apparent molecular weight than mammalian myelin basic protein. The levels of 2′,3′-cyclic nucleotide 3′-phosphodiesterase are significantly higher in whole tadpole brain homogenate and purified myelin than in similar mammalian preparations. Tadpole myelin lipids contain a higher proportion of phospholipids and less galactolipid than mammalian myelin. Tadpole myelin galactolipids include a high (16%) percentage of monogalactosyl diglyceride, a component found in only trace quantities (0.9%) in bovine myelin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 43 (1984), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Human and rat myelin preparations were incubated with varying concentrations of trypsin and plasmin to determine the effects of these proteolytic enzymes on myelin-associated glycoprotein (MAG), basic protein, and other myelin proteins and to compare the effects with those of the neutral protease that was reported to be endogenous in myelin. Basic protein was most susceptible to degradation by both trypsin and plasmin, whereas MAG was relatively resistant to their actions. Under the assay conditions used, the highest concentrations of trypsin and plasmin degraded 〉 80% of the basic protein but 〈 30% of the MAG, and lower concentrations caused significant loss of basic protein without appreciably affecting MAG. Neither trypsin nor plasmin caused a specific cleavage of MAG to a derivative of MAG (dMAG) in a manner analogous to the endogenous neutral protease. Thus the endogenous protease appears unique in converting human MAG to dMAG much more rapidly than it degrades basic protein. MAG is slowly degraded along with other proteins when myelin is treated with trypsin or plasmin, but it is less susceptible to their action than is basic protein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...