Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Origins of life and evolution of the biospheres 16 (1986), S. 211-212 
    ISSN: 1573-0875
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2072
    Keywords: Key words Z-IQNP ; SPECT ; Autoradiography ; Alzheimer’s disease ; Muscarinic acetylcholine receptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Rationale: The density of the M2 subtype of muscarinic acetylcholine receptors (mAChR) has been shown to be reduced in the brain of patients with Alzheimer’s disease (AD). It is therefore of interest to develop a brain imaging method for diagnostic purposes. Z-(R,R)-1-azabicyclo[2.2.2]oct-3-yl α-hydroxy-α-(1-iodo-1-propen-3-yl)-α-phenylacetate (Z-IQNP) is a muscarinic antagonist with high affinity for the M2 subtype. Objective: The pharmacological characteristics and topographic distribution of radiolabelled Z-IQNP as a radioligand for the M2 mAChR subtype were examined in vitro and in vivo. Methods: Z-IQNP was labelled with 125I and 123I. Autoradiography was performed on whole-hemisphere cryosections from human post mortem brains. SPECT was performed in a cynomolgus monkey. Results: Autoradiography showed binding of [125I]Z-IQNP in all brain regions, which was inhibited by the non-selective muscarinic antagonist scopolamine. The addition of BIBN 99, a compound with high affinity for the M2 subtype, inhibited [125I]Z-IQNP binding particularly in the cerebellum, which has a high density of the M2 subtype. SPECT demonstrated high uptake of [123I]Z-IQNP in all brain regions. The binding was markedly reduced in all brain regions after pretreatment with the non-selective muscarinic antagonist dexetimide and also the M1 antagonist biperiden. Dexetimide markedly inhibited [123I]Z-IQNP binding in the cerebellum, which is consistent with a high density of M2-receptors in this region. The sigma receptor binding compound DuP 734 had no effect on Z-IQNP binding either in vitro or in vivo. Conclusions: This study indicates that radiolabelled Z-IQNP has high specificity for mAChR with higher affinity for the M2 than the M1 subtype and negligible affinity for sigma recognition sites both in vitro and in vivo. [123I]Z-IQNP should be useful for future SPECT studies in AD for examination of the density of M2 receptors particularly in the cerebellum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1619-7089
    Keywords: Muscarinic receptor ligands ; IQNP ; IQNB ; Brain ; Heart ; Single-photon emission tomography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract E-(R,R)-IQNP is a new ligand analogue of IQNB, which has high affinity for the cholinergic-muscarinic receptor. Earlier studies have demonstrated high cerebral uptake of activity with selective localization in M1 receptor subtype areas of the brain. In this paper we describe the results of metabolic studies of E-(R,R)-IQNP directed at determining the metabolic fate of this ligand and the identification of the radioactive species observed in the brain and heart tissue. Tissue Folch extracts demonstrated that the lipid-soluble extracts from brain contained 87.0%±1.65% of the activity up to 24 h. In the heart, 61.9%±7.50% of the activity was extracted in the lipid-soluble extract after 30 min, decreasing to 51.4%± 0.65% by 4 h. In contrast, data from other tissues studied demonstrated large amounts of either aqueous soluble activity or activity which was not extracted from the tissue pellet material; analysis of lipid organic extracts revealed the following results: liver (4 h), 7.43%± 0.96%; serum (4 h), 3.73%±0.87%; urine (24 h), 9.4%; feces (24 h), 16.5%. Thin-layer chromatographic (TLC) and high-performance liquid chromatographic (HPLC) analyses of lipid-soluble brain extracts indicated that only unmetabolized E-(R,R)-IQNP was detected (99.4%± 1.25%). Activity which was extracted into the organic phase from heart tissue was also determined by TLC and HPLC analysis to contain large amounts of unmetabolized ligand after 4 h (88.5%± 0.57%). In addition, however, low levels of two additional radioactive components were detected which increased with time. TLC analysis of the plasma lipid extracts indicated only a small amount of unmetabolized E-(R,R)-IQNP. In comparison, the liver, feces, and urine lipid extracts contained only metabolites. These initial studies clearly indicate that radioactivity present in the brain after intravenous administration of radioiodinated E-(R,R)-IQNP represents only the unmetabolized ligand and that this new ligand shows promise for single-photon emission tomographic imaging of muscarinic receptors in humans.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...