Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    New York, N.Y. : Periodicals Archive Online (PAO)
    Harper's. 26 (1862:Dec.-1863:May) 792 
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-2932
    Keywords: tropospheric ozone ; white clover ; air pollution ; biomonitor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract A white clover (Trifolium repens L.) system using measured biomass to indicate effective concentrations of tropospheric ozone (O3) has been developed. The system utilizes the relative response of an O3-sensitive clone (NC-S) and an O3-resistant clone (NC-R) grown in 15-liter pots. Forage (leaves, stems and flowers) is cut, dried, and weighed at 28-day intervals. Forage dry weight ratios (NC-S/NC-R) for individual or multiple harvests indicate O3 concentrations during growth. In, 3 years of testing in open-top field chambers at Raleigh, North Carolina, O3 always decreased growth of NC-S more than that of NC-R and the NC-S/NC-R ratio routinely decreased as the O3 concentration increased. A national field test was performed in 1993 and 1994 to determine if the clover system can account for effects of climatic variables on clover growth per-se, and if climatic variables affect the relative response of the two clones to O3. Eight locations (Corvallis, Oregon; Kennedy Space Center, Florida; Delaware, Ohio; Amherst, Massachusetts; Blacksburg, Virginia; Raleigh, North Carolina; Riverside, California; San Bemardino mountains, California) provided large differences in O3 concentrations and climate. The NC-S/NC-R forage ratios for three consecutive 28-day growth periods for each year as related to the mean 12 hour per day O3 concentrations are presented in this manuscript. Ratios were generally highest where mean O3 concentrations were lowest (Oregon and Florida), lowest where mean O3 concentrations were highest (both California locations), and intermediate at other locations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-2932
    Keywords: rhizobia ; VAM
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The influence of soilborne symbionts such as rhizobia or mycorrhizal fungi on plant response to ozone (O3) has not been well defined. Leguminous plants in the field are infected by both types of organisms, which influence plant nutrition and growth. We studied the effects of infection withRhizobium leguminosarum biovartrifolii and/orGigaspora margarita on response of subterranean clover (Trifolium subterraneum L. cv Mt. Barker) to O3. Exposures were conducted in greenhouse CSTR chambers using four O3 concentrations [charcoal-filtered (CF), 50, 100, or 150 ppb; 6 h day−1, 5 day wk−1 for 12 weeks] as main plots (replicated). Four inoculum types were subplot treatments, i.e., inoculated with one, both, or neither microorganisms. At 2-wk intervals, plants were exposed to14CO2 and harvested 24 h later for determination of biomass and14C content of shoots and roots. Ozone at 100 or 150 ppb suppressed clover growth during the experiment. Inoculation withG. margarita alone suppressed clover growth by the last two harvests, whereasR. leguminosarum alone enhanced growth during this time period. When both symbionts were present, the plants grew similarly to the noninoculated controls. Shoot/root ratios were increased by 100 or 150 ppb O3 compared to that for CF-treated plants. Shoot/root ratios were greater for all inoculated plants compared to noninoculated controls. Under low O3 stress (CF or 50 ppb), plants inoculated with bothR. leguminosarum andG. margarita transported a greater proportion of recent photosynthate (14C) to roots than did noninoculated plants; we attribute this to metabolic requirements of the microorganisms. At the highest level of O3 stress (150 ppb), this did not occur, probably because little photosynthate was available and the shoots retained most of it for repair of injury. Statistically significant interactions occurred between O3 and inoculum types for shoot and total biomass. When averaged across harvests, 50 ppb O3 suppressed biomass in the plants inoculated withG. margarita alone. Apparently, the mycorrhizal fungus is such a significant C drain that even a small amount of O3 stress suppresses plant growth under these conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-2932
    Keywords: rhizobia ; VAM
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The influence of soilborne symbionts such as rhizobia or mycorrhizal fungi on plant response to ozone (O3) has not been well defined. Leguminous plants in the field are infected by both types of organisms, which influence plant nutrition and growth. We studied the effects of infection with Rhizobium leguminosarum biovar trifolii and/or Gigaspora margarita on response of subterranean clover (Trifolium subterraneum L. cv Mt. Barker) to O3. Exposures were conducted in greenhouse CSTR chambers using four O3 concentrations [charcoal-filtered (CF), 50, 100, or 150 ppb; 6 h day-1, 5 day wk-1 for 12 weeks] as main plots (replicated). Four inoculum types were subplot treatments, i.e., inoculated with one, both, or neither microorganisms. At 2-wk intervals, plants were exposed to 14CO2 and harvested 24 h later for determination of biomass and 14C content of shoots and roots. Ozone at 100 or 150 ppb suppressed clover growth during the experiment. Inoculation with G. margarita alone suppressed clover growth by the last two harvests, whereas R. leguminosarum alone enhanced growth during this time period. When both symbionts were present, the plants grew similarly to the noninoculated controls. Shoot/root ratios were increased by 100 or 150 ppb O3 compared to that for CF-treated plants. Shoot/root ratios were greater for all inoculated plants compared to noninoculated controls. Under low O3 stress (CF or 50 ppb), plants inoculated with both R. leguminosarum and G. margarita transported a greater proportion of recent photosynthate (14C) to roots than did noninoculated plants; we attribute this to metabolic requirements of the microorganisms. At the highest level of O3 stress (150 ppb), this did not occur, probably because little photosynthate was available and the shoots retained most of it for repair of injury. Statistically significant interactions occurred between O3 and inoculum types for shoot and total biomass. When averaged across harvests, 50 ppb O3 suppressed biomass in the plants inoculated with G. margarita alone. Apparently, the mycorrhizal fungus is such a significant C drain that even a small amount of O3 stress suppresses plant growth under these conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...