Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The reactive species peroxynitrite, formed via the near diffusion-limited reaction of nitric oxide and superoxide anion, is a potent oxidant that contributes to tissue damage in neurodegenerative disorders. Peroxynitrite readily nitrates tyrosine residues in proteins, producing a permanent modification that can be immunologically detected. We have previously demonstrated that in the nerve terminal, nitrotyrosine immunoreactivity is primarily associated with synaptophysin. Here we identify two other presynaptic proteins nitrated by peroxynitrite, Munc-18 and SNAP25, both of which are involved in sequential steps leading to vesicle exocytosis. To investigate whether peroxynitrite affects vesicle exocytosis, we used the fluorescent dye FM1-43 to label a recycling population of secretory vesicles within the synaptosomes. Bolus addition of peroxynitrite stimulated exocytosis and glutamate release. Notably, these effects were strongly reduced in the presence of NaHCO3, indicating that peroxynitrite acts mainly intracellularly. Furthermore, peroxynitrite enhanced the formation of the sodium dodecyl sulfate-resistant SNARE complex in a dose-dependent manner (100–1000 µm) and induced the formation of 3-nitrotyrosine in proteins of SNARE complex. These data suggest that modification(s) of synaptic vesicle proteins induced by peroxynitrite may affect protein–protein interactions in the docking/fusion steps, thus promoting exocytosis, and that, under excessive production of superoxide and nitric oxide, neurons may up-regulate neuronal signaling.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract : Peroxynitrite, the product of the radical-radical reaction between nitric oxide and superoxide anion, is a potent oxidant involved in tissue damage in neurodegenerative disorders. We investigated the modifications induced by peroxynitrite in tyrosine residues of proteins from synaptosomes. Peroxynitrite treatment (≥50 μM) induced tyrosine nitration and increased tyrosine phosphorylation. Synaptophysin was identified as one of the major nitrated proteins and pp60src kinase as one of the major phosphorylated substrates. Further fractionation of synaptosomes revealed nitrated synaptophysin in the synaptic vesicles, whereas phosphorylated pp60src was enriched in the postsynaptic density fraction. Tyrosine phosphorylation was increased by treatment with 50-500 μM peroxynitrite and decreased by higher concentrations, suggesting a possible activation/inactivation of kinases. Immunocomplex kinase assay proved that peroxynitrite treatment of synaptosomes modulated the pp60src autophosphorylation activity. The addition of bicarbonate (CO2 1.3 mM) produced a moderate enhancing effect on some nitrate proteins but significantly protected the activity of pp60src against peroxynitrite-mediated inhibition so that at 1 mM peroxynitrite, the kinase was still more active than in untreated synaptosomes. The phosphotyrosine phosphatase activity of synaptosomes was inhibited by peroxynitrite (≥50 μM) but significantly protected by CO2. Thus, the increase of phosphorylation cannot be attributed to peroxynitrite-mediated inhibition of phosphatases. We suggest that peroxynitrite may regulate the posttranslational modification of tyrosine residues in pre- and postsynaptic proteins. Identification of the major protein targets gives insight into the pathways possibly involved in neuronal degeneration associated with peroxynitrite overproduction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 34 (1995), S. 7177-7185 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 26 (1987), S. 8133-8137 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0730-2312
    Keywords: spin labeling ; red blood cell membrane thermal transitions ; spectrin-membrane interaction ; aging ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The effects of red blood cell (RBC) age on membrane thermal properties have been investigated by using a 16-nitroxide stearic acid spin probe. We detected in unfractionated and most dense cells (2% fraction of circulating cells) a thermal transition at 40°C that in young cells (1% fraction) was lowered at 33-35°C. Spectrin seems to be directly involved in the transition detected in both young and unfractionated cells, as showed by the disappearance of the breaks after low salt extraction of spectrin. A further indication for a role of spectrin in this transition comes from its characteristic thermal unfolding above 40°C.However, young cells did not show changes either in the thermal unfolding of spectrin or in the distribution of spectrin dimer, tetramer, and high oligometric forms. These data rule out that spectrin of young RBC is modified in its thermal properties and indicate that young cells may have a different spectrin-membrane interaction.Treatment of unfractionated ghosts with an antibody specific for a fragment of the 10K domain of protein 4.1, which is fully competent for the spectrin-actin binding, produced an evident lowering of the transition temperature. The same antibody did not affect the thermal transition of young ghosts. Our results suggest that spectrin-membrane interactions may be regulated during RBC lifespan.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 19 (1982), S. 59-75 
    ISSN: 0730-2312
    Keywords: ghost resealing ; fluorescein-labeled dextran ; lipid lateral phase separation ; EPR studies ; cytoskeletal protein-lipid interactions ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The hypothesis of a correlation between a 10°-20°C lipid phase transition and the resealing process of human erythrocyte membrane has been investigated. The conditions required to reseal human erythrocyte ghosts have been studied by measuring the amount of fluorescein-labeled dextran (FD) that is trapped into the membrane.Temperature per se was sufficient to induce membrane resealing: (1) at 5 mM sodium phosphate, pH 7.8 (5P8), resealing began at 12°C; (2) at salt concentrations above 8 mM sodium phosphate, it occurred at lower temperature; and (3) in isotonic saline was detected just above 5°C.The removal of peripheral membrane proteins from unsealed membranes by chymotrypsin at 0°C in 5P8 was followed by membrane resealing.This seems to imply that the presence of proteins is necessary to maintain the membrane unsealed. Protein-induced lateral phase separation of lipids may be a reasonable mechanism for the observed phenomena. In fact, the permeability of phosphatidylserine-phosphatidylcholine mixed liposomes to FD is modified by lipid lateral phase separation induced by pH or poly-L-lysine.Electron spin resonance studies of membrane fluidity by a spin labeled stearic acid showed a fluidity break around 11°C, which may be due to a gel-liquid phase transition. Fluidity changes are abolished by chymotrypsin treatment.It is suggested that a lateral phase separation is responsible for the permeability of open ghosts to FD. Accordingly, disruption of phase separation apparently produces membrane reconstitution. In this respect peripheral proteins and particularly the spectrin-actin network, may play a major role in membrane resealing.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 25 (1984), S. 61-72 
    ISSN: 0730-2312
    Keywords: hypertonic cryohemolysis ; hypotonic hemolysis ; thermotropic membrane processes ; membrane structure-function relationship ; erythrocyte membrane treatments ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The hypothesis of a correlation between the effects of temperature on red blood cells hypotonic hemolysis and hypertonic cryoheniolysis and two thermotropic structural transitions evidenced by EPR studies has been tested. Hypertonic cryoheniolysis of red blood cells shows critical temperatures at 7°C and 19°C. In hypotonic solution, the osmotic resistance increases near 10°C and levels off above 20°C. EPR studies of red blood cell membrane of a 16-dinyloxyl stearic acid spin label show, in the 0-50°C range, the presence of three thermotropic transitions at 8, 20, and 40°C. Treatments of red blood cells with acidic or alkaline pH, glutaraldehyde, and chlorpromazine abolish hypertonic cryoheniolysis and reduce the effect of temperature on hypotonic hemolysis. 16-Dinyloxyl stearic acid spectra of red blood cells treated with glutaraldehyde and chlorpromazine show the disappearance of the 8°C transition. Both the 8°C and the 20°C transitions were abolished by acidic pH treatment. The correlation between the temperature dependence of red blood cell lysis and thermotropic breaks might be indicative of the presence of structural transitions producing areas of mismatching between differently ordered membrane components where the osmotic resistance is decreased.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0730-2312
    Keywords: spin-labeling of erythrocyte membrane ; membrane structural transitions ; protein-lipid interactions ; membrane organization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The relationship between membrane structural properties and functions has been generally inferred from observed thermotropic phenomena. By the use of 16-dinyloxyl stearic acid spin probe we investigated the red blood cell membrane components involved in three characteristic thermotropic structural transitions occurring at 8, 20, and 40°C. The transition at 8°C is removed by chymotrypsin treatment at the cytoplasmic membrane layer. The 20°C phase transition is unmodified after chymotrypsin treatment and occurs at 15°C after complete proteolysis of intramembranc chymolrypsin insensitive peptides. Liposomes from the total lipid extract of RBC show only one thermotropic transition at 15°C. The 40°C phase transition is absent in vesicles free of skeletal proteins, in vesicles obtained after RBC storage, and in low-ionic-strength resealed ghosts. Transitions at 8°C and 40°C appear to be due to the interactions of cytoplasmic exposed proteins with membrane, whereas the 20°C transition is intrinsic to the lipid component.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...