Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 14 (1989), S. 1067-1074 
    ISSN: 1573-6903
    Keywords: Calcium ; phosphoinositides ; brain slices ; inositol phosphates ; calcium agonists ; depolarization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The stimulation of production of inositol phosphates in rat cortical slices by KCl depolarization and the effects of calcium channel active drugs were investigated. Elevation of K+ in the medium up to 48 mM KCl caused a linear concentration-dependent increase in [3H]inositol phosphate accumulation. The KCl stimulated response was not significantly inhibited in the presence of muscarinic or α1-adrenergic antagonists. KCl stimulated the production of inositol trisphosphate at 60 min but not 10 min. Addition of peptidase inhibitors did not significantly affect KCl-stimulated PI hydrolysis. The KCl-stimulated response was still observed in the absence of extracellular calcium, although the net accumulation of inositol phosphates was greater in the presence of 0.1 or 0.5 mM calcium. KCl (48 mM) inhibited [3H]inositol uptake into phospholipids of cortical slices. The dihydropyridine calcium channel agonist BAY K 8644 stimulated PI hydrolysis in cortical slices in a concentration dependent manner in the presence of 19 mM KCl. The BAY K 8644-stimulated PI response was partially inhibited by 1μM atropine but not by 1μM prazosin. Calcium channel blockers nitrendipine, verapamil, flunarizine, and nifedipine slightly inhibited the PI response stimulated by 19 mM KCl in the presence or absence of BAY K 8644. The effects of the calcium channel antagonists were attenuated in the presence of 1 μM atropine. The peptide calcium channel blocker ω-conotoxin did not affect KCl-stimulated PI hydrolysis. These results suggest that endogenous muscarinic or adrenergic neurotransmitters are not involved in KCl-stimulated PI hydrolysis in cortical slices. Although extracellular calcium is necessary for optimal KCl-stimulated PI hydrolysis, it is not required for the expression of the KCl-evoked response suggesting that depolarization is the primary trigger for this stimulant.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...