Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 737 (1994), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 737 (1994), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 39-47 
    ISSN: 0730-2312
    Keywords: α2M ; PAF ; RBF ; PKC ; lyso-PAF acetyltransferase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The binding of receptor-recognized forms of α2-macroglobulin (α2M) to macrophage α2M signaling receptors increases inositol-1,4,5-triphosphate synthesis and induces Ca2+ mobilization. In this report, we demonstrate that ligation of the macrophage α2M signaling receptor is also associated with synthesis of platelet activating factor (PAF) by both the de novo and remodeling pathways. Both α2M-methylamine and a cloned and expressed 20-kDa receptor binding fragment (RBF) from rat α2M+, stimulated macrophage synthesis of PAF from [3H]acetate, [3H]methylcholine, and 1-O-[3H]alkyl lyso-PAF by two- to threefold. PAF levels reached a peak in 20 min after the cells were exposed to α2M-methylamine or RBF; they remained elevated for about 1 h after ligand addition to the cells. When [3H]methylcholine was the substrate, pertussis toxin did not block PAF synthesis, but the protein kinase C inhibitor staurosporin reduced synthesis by 65-70%. Cycloheximide completely abolished the increase in synthesis of PAF by macrophages exposed to α2M-methylamine. By contrast, when [3H]acetate was employed as a precursor, staurosporin or cycloheximide did not abolish the increase in PAF synthesis. These studies suggest that protein kinase C is necessary for the induction of the de novo pathway by α2M-methylamine. Both α2M-methylamine and RBF stimulated the activity of lyso-PAF acetyltransferase by about fourfold. Both ligands also stimulated the activity of PAF acetylhydrolase by about six- to sevenfold, indicating that ligation of the α2M signaling receptor also regulates the degradation of PAF. The ability of receptor-recognized forms of α2M to regulate levels of PAF suggests that α2M-proteinase complexes not only regulate macrophage function by activating intracellular signaling but also may indirectly regulate the function of other cells that cannot bind α2M-proteinase complexes. © 1996 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 61-71 
    ISSN: 0730-2312
    Keywords: α2M* ; cAMP synthesis ; IP3 synthesis ; α1I3 ; conformational changes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Binding of receptor-recognized forms of tetrameric human α2-macroglobulin (α2M*) to a macrophage signaling receptor induces cAMP synthesis, increases in inositol 1,4,5-triphosphate (IP3) synthesis, and a concomitant rise in cytosolic free calcium ([Ca2+]i). The α2M* signaling receptor is coupled to a pertussis-toxin insensitive G protein. Binding of α2M* also occurs to the low density lipoprotein receptor-related protein/α2M receptor (LRP/α2MR), but this binding does not induce signal transduction. Rat α1-inhibitor-3 (α1I3) is a monomeric member of the α-macroglobulin/complement superfamily. Like α2M, it can react with proteinases or methylamine which induces a conformational change causing activated α1I3 to bind to LRP/α2MR. We now report that α1I3-methylamine binds to the macrophage α2M* signaling receptor inducing a rapid rise in the synthesis of IP3 with a subsequent 1.5- to 3-fold rise in [Ca2+]i. α1I3-methylamine binding to macrophages also caused a statistically significant elevation in cAMP. Native α1I3, like α2M, was unable to induce signal transduction. α1I3 forms a complex with α1-microglobulin, which has a distinct conformation from α1I3 and is recognized by LRP/α2MR. This complex also induces an increase in [Ca2+]i comparable to the effect of α1I3-methylamine on macrophages. It is concluded that activation of α1I3 by methylamine or binding of α1-microglobulin causes similar conformational changes in the inhibitor, exposing the receptor recognition site for the α2M* signaling receptor, as well as for LRP/α2MR. © 1996 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...