Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Recent studies have shown that hepatocyte growth factor (HGF) promotes the survival of embryonic motor neurons. However, it remains unclear whether HGF has trophic effects on mature motor neurons. In the present study, we examined the effects of HGF on adult motoneurons using the hypoglossal nerve transection model. In adult rats, neurons in the hypoglossal nucleus show a dramatic loss of choline acetyltransferase (ChAT) protein and mRNA after the axotomy. This reduction of ChAT was markedly prevented when HGF was administered continuously at the cut end of the nerve using an osmotic pump. The HGF receptor, c-met, protein and mRNA, which were faintly expressed in hypoglossal neurons under normal conditions, gradually increased and reached maximal levels 2 weeks after the axotomy. Administration of HGF reduced this c-met upregulation almost to normal levels. We also quantified HGF mRNA in the tongue and hypoglossal nucleus. The tongue contained abundant HGF mRNA, whereas the nucleus contained only low levels. Interestingly, the HGF mRNA level in the nucleus did not increase after the axotomy. These findings suggest that HGF is principally produced in the tongue and contributes to maintain ChAT expression in the nucleus. HGF produced in the hypoglossal nucleus alone after disconnection from the tongue may not be sufficient for the maintenance of the motor neuron function. Thus, exogenously applied HGF was effective to prevent the downregulation of ChAT activities. These findings provide a strong rationale for the potential clinical use of HGF for the treatment of motor neuron degenerative disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0533
    Keywords: Macrophages ; Phagocytosis ; Neuronal cell death ; Cytotoxicity ; Autoimmunity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Transient arrest of the cerebral circulation leads to neuronal cell death in selectively vulnerable regions of the central nervous system. It has recently been shown at the light microscopical level that neuronal necrosis is accompanied by a rapid microglial reaction in ischemia (Gehrmann et al. (1992) J. Cereb. Blood Flow Metab. 12:257–269). In the present study we have examined the postischemic microglial reaction in the dorsal rat hippocampus at the ultrastructural level using immuno-electron microscopy. Global ischemia was produced by 30 min of four-vessel occlusion and the microglial reaction then studied after 8, 24 and 72 h. In sham-operated controls microglial cells were not phagocytic; they were randomly distributed throughout the neuropil and occasionally made contacts with other structures such as dendrites in CA1. Ultrastructural signs of activation were observed from 1 day postlesion onward. Reactive microglial cells were consistently seen to phagocytose degenerating neurons particularly in the CA1 stratum pyramidale and in the CA4 sector. They were sometimes interposed between two morphologically distinct types of CA1 neurons, i.e., “dark” (degenerating) and “pale” (surviving) types of neurons. Phagocytic microglial cells also became positive for major histocompatibility complex (MHC) class II antigens at these locations from 1 day after ischemia onward. Furthermore, activated microglial cells were frequent along degenerating dendrites in the stratum radiatum of CA1. After survival times of up to 72 h microglial cells, but not astrocytes, were occasionally observed to undergo mitosis. In addition to their random distribution across the neuropil, microglial cells were frequently observed in a perivascular position under normal conditions. These perivascular microglial cells rapidly expressed MHC class II antigens, extended broad cellular processes and showed signs of phagocytic activity from 1 day onward. These results demonstrate that upon ischemic injury microglial cells proliferate and are rapidly recruited to the site of injury. By virtue of their pronounced cytotoxic potential, microglial cells could be further involved in mediating tissue destruction in ischemia, thus constituting the main immuneffector cell population in this pathological state.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1433-0350
    Keywords: Congenital hydrocephalus HTX rats ; Ventriculoperitoneal shunt ; Synaptogenesis ; Learning disability ; Synaptic vesicle protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The learning ability of congenitally hydrocephalic HTX rats in which hydrocephalus had been arrested by the insertion of a V-P shunt 7 days after birth (early shunt) was assessed by means of the light-darkness discrimination test when the animals reached maturity. Early shunt placement resulted in marked reduction in size of abnormally enlarged ventricles and the prevention of both decreasing spine density and decay of synaptic vesicle protein (SVP-38) in the affected cerebral cortex. The learning ability of such animals was also found not to be impaired compared with that of animals in a sham-operation group. On the basis of these investigations, it is concluded that early shunt placement may have a beneficial role in preventing not only impairment of synaptogenesis of the brain by progressing hydrocephalus, but also learning disability. Recent biochemical investigation of the developing brains of hydrocephalic HTX rats revealed problems that cannot be resolved by early shunt insertion, and these are also discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Child's nervous system 7 (1991), S. 121-128 
    ISSN: 1433-0350
    Keywords: Congenital hydrocephalus ; Rat ; Synaptogenesis ; Golgi study ; Ventriculoperitoneal shunt ; Learning disability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Using HTX-rats with congenital hereditary hydrocephalus, we used neuropathological methods, including quantitative Golgi study and neurobehavioral evaluation, to investigate the following problems. (1) What kind of damage does congenital hydrocephalus cause to developing brain tissue? (2) How much can the damage be repaired by ventriculoperitoneal shunting if performed at 4 weeks of age, enabling 4-week-old hydrocephalic rats to survive beyond sexual maturation? (3) What is the status of learning ability of long-term surviving rats with arrested shunt-dependent hydrocephalus? The findings of our study suggest that congenital hydrocephalus impairs the development and formation of the dendrites and spines of the cerebrocortical neurons. Following ventriculoperitoneal shunting, we confirmed that rats with arrested shunt-dependent hydrocephalus demonstrated learning disability in a light-darkness discrimination test using a Y-maze. The development of the dendrites and spines of the cerebrocortical neurons seemed to take place to some degree after shunting, but normal spine density could not be restored. Also suggested was a possible relationship between learning disability and a decrease in spine density, i.e., impairment of synaptogenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...