Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 224 (1969), S. 1097-1097 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] These observations have led Donahue4 and Hunten and Wallace1 to suggest that the chemical theory alone is not adequate. The chemical theory, as developed, for example, by Blamont and Donahue5, predicts the sodium abundance to be determined by a balance between the oxidation reaction and the ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 205 (1965), S. 272-272 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Let the number density of ion-pairs having internal energy between x and x + dx be n(x)dx in the quasi-equilibrium state and be n0(x)dx in thermodynamic equilibrium. Write: p(#) ? n(x)/no(x), x 〈 0 = 1 . x 〉 0\ (2) Considering a gas of neutral atoms and ion-pairs of internal energy x ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 253 (1975), S. 330-331 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] An important feature arising from our investigation is the relationship between the meridional ExB drift of the plasma and west-east ExB drift relative to the Earth. This relation results from the assumption of an incompressible magnetic field. Rishbeth and Hanson2 and Murphy4 have shown that for a ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 206 (1965), S. 705-706 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The suggestion has been made5,6 that vertical electromagnetic drift may be the ionization transport mechanism required. Bramley and Peart7, using a perturbation approach, have extended the work of Rishbeth et al.3 to include the effect of a small electromagnetic drift, but a considerable ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1420-9136
    Keywords: Thermosphere ; ionosphere ; global modelling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The University College London Global Thermospheric Model and the Sheffield University High-Latitude Ionospheric Convection Model have been integrated and improved to simulate the self-consistent interaction of the thermosphere and ionosphere at high latitudes. For mid- and low-latitudes, equatorward of 65 degrees geomagnetic, the neutral thermospheric code maintains the use of an empirical description of plasma densities. The neutral thermospheric wind velocity, composition, density, and energy budget are computed, including their full interactions with the high-latitude ion drift and the evolution of the plasma densities of O+, H+, NO+, N2 +, and O2 +. Two 24 hr Universal Time (UT) simulations have been performed at high solar activity, for a level of moderate geomagnetic activity, at the June and December solstices, to investigate the UT and seasonal response of the coupled system. During winter, the diurnal migration of the polar convection pattern into and out of sunlight, together with ion transport, plays a major role in the plasma density structure at F-region altitudes. Only during those UT periods, when the entire geomagnetic polar region is in total darkness, is the effect of auroral oval precipitation imprinted on the F-region. In summer, the increase in the proportion of molecular to atomic species, created by the global seasonal circulation and augmented by the geomagnetic forcing, is effective in controlling the plasma densities at all Universal Times. The increased destruction of atomic oxygen ions in summer reduces the mean level of F-region ionization to similar mean levels seen in winter, despite the increased level of solar insolation. The UT variation exceeds the seasonal differences, implying a longitudinal dependency in what can be described as a high-latitude winter ionospheric anomaly. Below 200 km summer plasma densities exceed winter values at all times, and are responsible for the larger summer conductivities, Joule heating, and consequently, increased neutral winds and composition disturbance. The summer F-region ion density profile is a broader, flatter feature than in winter, the peak spanning a wider altitude range.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 14 (1997), S. 1159-1169 
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A fully time-dependent ionospheric convection model, in which electric potentials are derived by an analytic solution of Laplace’s equation, is described. This model has been developed to replace the empirically derived average convection patterns currently used routinely in the Sheffield/SEL/UCL coupled thermosphere/ionosphere/plasmasphere model (CTIP) for modelling disturbed periods. Illustrative studies of such periods indicate that, for the electric field pulsation periods imposed, long-term averages of parameters such as Joule heating and plasma density have significantly different values in a time-dependent model compared to those derived under the same mean conditions in a steady-state model. These differences are indicative of the highly non-linear nature of the processes involved.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 15 (1997), S. 1048-1056 
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A global coupled thermosphere-ionosphere-plasmasphere model is used to simulate a family of large-scale imperfectly ducted atmospheric gravity waves (AGWs) and associated travelling ionospheric disturbances (TIDs) originating at conjugate magnetic latitudes in the north and south auroral zones and subsequently propagating meridionally to equatorial latitudes. A ’fast‘ dominant mode and two slower modes are identified. We find that, at the magnetic equator, all the clearly identified modes of AGW interfere constructively and pass through to the opposite hemisphere with unchanged velocity. At F-region altitudes the ’fast‘ AGW has the largest amplitude, and when northward propagating and southward propagating modes interfere at the equator, the TID (as parameterised by the fractional change in the electron density at the F2 peak) increases in magnitude at the equator. The amplitude of the TID at the magnetic equator is increased compared to mid-latitudes in both upper and lower F-regions with a larger increase in the upper F-region. The ionospheric disturbance at the equator persists in the upper F-region for about 1 hour and in the lower F-region for 2.5 hours after the AGWs first interfere, and it is suggested that this is due to enhancements of the TID by slower AGW modes arriving later at the magnetic equator. The complex effects of the interplays of the TIDs generated in the equatorial plasmasphere are analysed by examining neutral and ion winds predicted by the model, and are demonstrated to be consequences of the forcing of the plasmasphere along the magnetic field lines by the neutral air pressure wave.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 12 (1994), S. 296-303 
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Results from a mathematical model provide a description of the mid-latitude, low L-shell ionosphere and plasmasphere. Variations in the composition and dynamics of the plasmasphere and changes in the nature of the coupling between the plasmasphere and the ionosphere are studied for moderately disturbed conditions. Modelled results are compared to group delay and Doppler shift measurements of whistler mode signals at Faraday, Antarctica (L\approx2.5), to investigate the effects of disturbed time electric fields on the inner plasmasphere and ionosphere. The disturbed time electric field causes a rapid outward drifting of the plasma leading to a decrease in modelled plasmaspheric electron density at a fixed L-value, which agrees with experimental observations. During the periods of outward drift, the modelled coupling flux is upwards to the plasmasphere which can lead to a significant depletion of NmF2 values.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0992-7689
    Keywords: Atmospheric composition and structure (thermosphere-composition and chemistry) ; Ionosphere (mid-latitude ionosphere; modelling and forecasting)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Annual, seasonal and semiannual variations of F2-layer electron density (NmF2) and height (hmF2) have been compared with the coupled thermosphere-ionosphere-plasmasphere computational model (CTIP), for geomagnetically quiet conditions. Compared with results from ionosonde data from midlatitudes, CTIP reproduces quite well many observed features of NmF2, such as the dominant winter maxima at high midlatitudes in longitude sectors near the magnetic poles, the equinox maxima in sectors remote from the magnetic poles and at lower latitudes generally, and the form of the month-to-month variations at latitudes between about 60°N and 50°S. CTIP also reproduces the seasonal behaviour of NmF2 at midnight and the summer-winter changes of hmF2. Some features of the F2-layer, not reproduced by the present version of CTIP, are attributed to processes not included in the modelling. Examples are the increased prevalence of the winter maxima of noon NmF2 at higher solar activity, which may be a consequence of the increase of F2-layer loss rate in summer by vibrationally excited molecular nitrogen, and the semiannual variation in hmF2, which may be due to tidal effects. An unexpected feature of the computed distributions of NmF2 is an east-west hemisphere difference, which seems to be linked to the geomagnetic field configuration. Physical discussion is reserved to the companion paper by Rishbeth et al.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 13 (1995), S. 1164-1171 
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A fully time-dependent mathematical model, SUPIM, of the Earth’s plasmasphere is used in this investigation. The model solves coupled time-dependent equations of continuity, momentum and energy balance for the O+, H+, He+, N+2, O+2, NO+ ions and electrons; in the present study, the geomagnetic field is represented by an axial-centred dipole. Calculation of vibrationally excited nitrogen molecules, which has been incorporated into the model, is presented here. The enhanced model is then used to investigate the behaviour of vibrationally excited nitrogen molecules with F10.7 and solar EUV flux, during summer, winter and equinox conditions. The presence of vibrational nitrogen causes a reduction in the electron content. The diurnal peak in electron content increases linearly up to a certain value of F10.7, and above this value increases at a lesser rate, in agreement with previous observations and modelling work. The value of F10.7 at which this change in gradient occurs is reduced by the presence of vibrational nitrogen. Vibrational nitrogen is most effective at F-region altitudes during summer daytime conditions when a reduction in the electron density is seen. A lesser effect is seen at equinox, and in winter the effect is negligible. The summer reduction in electron density due to vibrational nitrogen therefore reinforces the seasonal anomaly.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...