Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Cardiovascular drug reviews 16 (1998), S. 0 
    ISSN: 1527-3466
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 21 (2005), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Isolated brainstem-spinal cord preparations were used to explore the coexistence of a direct and an indirect descending drive from the brainstem respiratory centre to cervical and thoracic respiratory motoneurons in the neonatal Sprague–Dawley rat. Polysynaptic spinal relay pathways from the respiratory centre were suppressed by selectively perfusing the cord with mephenesin (1 mm) or a solution enriched with Ca2+ and Mg2+. At birth, both direct and spinally relayed pathways are functional and contribute equally to the global descending respiratory drive. However, during the first postnatal week, significant maturational changes appear in the way the respiratory centre controls its target respiratory motoneurons in the cervical and thoracic spinal cord, with the direct respiratory drive becoming progressively predominant with maturation (from 50% to around 75% of the global descending command). The relative contributions of the monosynaptic and the polysynaptic spinal pathways may therefore have important implications for effective respiratory control during early postnatal development.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 14 (2001), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The spinal localization of the forelimb locomotor generators and their interactions with other spinal segments were investigated on in vitro brainstem–spinal cord preparations of new-born rats. Superfusion of the cervicothoracic cord (C1–T4) with high K+/low Mg2+ artificial cerebrospinal fluid (aCSF) evoked rhythmic motor root activity that was limited to low cervical (C7, C8) and high thoracic (T1) spinal levels. This activity consisted of synchronous, homolateral bursts and a typical alternating bilateral pattern. Rhythmic activity with similar locomotor-like characteristics could be induced with either serotonin (5-HT, 5 µm), N-methyl-d-aspartate (NMDA, 5 µm), kainate (10 µm) or a ‘cocktail’ of 5-HT (5 µm) and NMDA (5 µm). During 5-HT/NMDA perfusion of the cervicothoracic cord, induced bursting was no longer restricted to C7–T1 levels, but also occurred at cervical C3–C5 levels and with C5–C8 homolateral alternation. Spinal transections between C6 and C7 cervical segments did not abolish rhythmic activity in C7–T1, but suppressed locomotor-like rhythmicity at C3–C5 levels. Reduced regions comprising the C7–C8 or C8–T1 segments maintained rhythmicity. Superfusion of the whole cord with 5-HT/NMDA induced ventral root bursting with similar frequencies at all recorded segments (cervical, thoracic and lumbar). After isolation, the T3–T10 cord was unable to sustain any rhythmic activity while cervical and lumbar segmental levels continued to burst, albeit at different frequencies. We also found that the faster caudal and the slower rostral locomotor generators interact to produce coordinated locomotor-like activity in all segments of the intact spinal cord. In conclusion, C7–T1 spinal levels display a strong motor rhythmogenic ability; with the lumbar generators, they contribute to coordinated rhythmic activity along the entire spinal cord of a quadrupedal locomoting mammal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 12 (2000), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Previous studies have reported that the α1-adrenergic system can activate spinal rhythm generators belonging to the central respiratory network. In order to analyse α1-adrenergic effects on both cranial and spinal motoneuronal activity, phenylephrine (1–800 μm) was applied to in vitro preparations of neonatal rat brainstem–spinal cord. High concentration of phenylephrine superfusion exerted multiple effects on spinal cervical outputs (C2–C6), consisting of a lengthening of respiratory period and an increase in inspiratory burst duration. Furthermore, in 55% of cases a slow motor rhythm recorded from the same spinal outputs was superimposed on the inspiratory activity. However, this phenylephrine-induced slow motor rhythm generated at the spinal level was observed neither in inspiratory cranial nerves (glossopharyngeal, vagal and hypoglossal outputs) nor in phrenic nerves. Whole-cell patch-clamp recordings were carried out on cervical motoneurons (C4–C5), to determine first which motoneurons were involved in this slow rhythm, and secondly the cellular events underlying direct phenylephrine effects on motoneurons. In all types of motoneurons (inspiratory and nonrespiratory) phenylephrine induced a prolonged depolarization with an increase in neuronal excitability. However, only nonrespiratory motoneurons showed additional rhythmic membrane depolarizations (with spiking) occurring in phase with the slow motor rhythm recorded from the ventral root. Furthermore the tonic depolarization produced in all motoneurons results from an inward current [which persists in the presence of tetrodotoxin (TTX)] associated with a decrease in neuron input conductance, with a reversal potential varying as a Nernstian function of extracellular K+ concentration. Our results indicate that the α1-adrenoceptor activation: (i) affects both the central respiratory command (i.e. respiratory period and inspiratory burst duration) and spinal inspiratory outputs; (ii) induces slow spinal motor rhythmicity, which is unlikely to be related to the respiratory system; and (iii), increases motoneuronal excitability, probably through a decrease in postsynaptic leak K+ conductance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-904X
    Keywords: trimetazidine ; lipophilicity ; proton transfer ; ionic partition diagram ; ITIES
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. The anti-ischemic drug trimetazidine (TMZ) acts by a combination of molecular mechanisms which begin to be understood. Thus, it acts in the micromolar range to significantly reduce intracellular acidification during ischemia. To search for a possible physicochemical explanation of this phenomenon, we investigated the transfer mechanisms of the various electrical forms of this dibasic drug. Methods. The transfer characteristics of TMZ were studied by electrochemistry at the water/1,2-dichloroethane interface. Cyclic voltammetry was used to measure the formal transfer potentials of singly and doubly protonated forms of TMZ (noted TH+ and TH2 2+, respectively ) as a function of aqueous pH, and the partition coefficient of neutral TMZ (log P T) was measured by two-phase titration. Results. log P T was measured to be 1.04 ± 0.06, and the acid-base dissociation constants in water were deduced to be pK w a1 = 4.54 ± .02 and pK w a2 = 9.14 ± 0.02. The partition coefficients of TH+ and TH2 2+ were found to be respectively log P 0′ TH+ = −3.78 ± 0.16 and log P 0′ TH 2 2+= −9.84 ± 0.30, which agrees well with the charge being delocalized on two nitrogen atoms in TH+. The pH-partition profile of TMZ was then established in the form of its ionic partition diagram, which showed that the affinity of the ions for the organic phase is pH-dependent and strongly increased by the interfacial potential. Conclusions. This behavior suggests a physiochemical mechanism whereby efflux of protonated TMZ out of an acidified cell is facilitated, in effect exporting protons to extracellular space.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...