Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of medicinal chemistry 37 (1994), S. 4572-4575 
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of medicinal chemistry 37 (1994), S. 4245-4250 
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1619-7089
    Keywords: Key words: Striatum ; Single-photon emission tomography ; Dopamine neuron ; 6-OH-dopamine ; Autoradiography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. Technetium-99m is the most commonly used radionuclide in routine nuclear medicine imaging procedures. Development of 99mTc-labeled receptor-specific imaging agents for studying the central nervous system is potentially useful for evaluation of brain function in normal and disease states. A novel 99mTc-labeled tropane derivative, [99mTc]TRODAT-1, which is useful as a potential CNS dopamine transporter imaging agent, was evaluated and characterized. After i.v. injection into rats, [99mTc]TRODAT-1 displayed specific brain uptake in the rat striatal region (striatum-cerebellum/cerebellum ratio 1.8 at 60 min), where dopamine neurons are concentrated. The specific striatal uptake could be blocked by pretreating rats with a dose of competing dopamine transporter ligand, β-CIT (or RTI-55, i.v., 1 mg/kg). However, the specific striatal uptake of [99mTc]TRODAT-1 was not affected by co-injection of excess free ligand (TRODAT-1, up to 200 μg per rat) or by pretreating the rats with haloperidol (i.v., 1 mg/kg). The specific uptake in striatal regions of rats that had prior 6-hydroxydopamine lesion in the substantia nigra area showed a dramatic reduction. The radioactive material recovered from the rat striatal homogenates at 60 min after i.v. injection of [99mTc]TRODAT-1 showed primarily the original compound (〉95%), a good indication of in vivo stability in brain tissue. Similar and comparable organ distribution patterns and brain regional uptakes of [99mTc]TRODAT-1 were obtained for male and female rats. Ex vivo autoradiography results of rat brain sections further confirmed the high uptake and retention of [99mTc]TRODAT-1 in the striatal region. In vitro binding studies measuring the affinity to dopamine transporters for the free ligand, TRODAT-1, and a nonradioactive rhenium derivative, Re-TRODAT-1, showed K i values of 9.7 nM and 14.1 nM, respectively. Behavioral studies in rats using the free ligand, TRODAT-1 and Re-TRODAT-1 indicated that, unlike other tropane derivatives, they displayed no effect on locomotor activity, suggesting low toxicity. These results strongly support the conclusions that this novel 99mTc radioligand binds selectively to dopamine transporters in the brain and that is is potentially useful for in vivo assessment of the loss of dopamine neurons in Parkinson’s and other neurodegenerative diseases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1619-7089
    Keywords: Key words. Serotonin transporter ; SSRI ; 5-Hydroxytryptamine ; Single-photon emission tomography ; Baboon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. We have described previously a selective serotonin transporter (SERT) radioligand, [123I]IDAM. We now report a similarly potent, but more stable IDAM derivative, 5-iodo-2-[2-[(dimethylamino)methyl]phenoxy]benzyl alcohol ([123I]ODAM). The imaging characteristics of this radioligand were studied and compared against [123I]IDAM. Dynamic sequences of single-photon emission tomography (SPET) scans were obtained on three female baboons after injection of 375 MBq of [123I]ODAM. Displacing doses (1 mg/kg) of the selective SERT ligand (+)McN5652 were administered 120 min after injection of [123I]ODAM. Total integrated brain uptake of [123I]ODAM was about 30% higher than [123I]IDAM. After 60–120 min, the regional distribution of tracer within the brain reflected the characteristic distribution of SERT. Peak specific binding in the midbrain occurred 120 min after injection, with an equilibrium midbrain to cerebellar ratio of 1.50±0.08, which was slightly lower than the value for [123I]IDAM (1.80± 0.13). Both the binding kinetics and the metabolism of [123I]ODAM were slower than those of [123I]IDAM. Following injection of a competing SERT ligand, (+)McN5652, the tracer exhibited washout from areas with high concentrations of SERT, with a dissociation kinetic rate constant k off=0.0085±0.0028 min–1 in the midbrain. Similar studies using nisoxetine and methylphenidate showed no displacement, consistent with its low binding affinity to norepinephrine and dopamine transporters, respectively. These results suggest that [123I]ODAM is suitable for selective SPET imaging of SERT in the primate brain, with higher uptake and slower kinetics and metabolism than [123I]IDAM, but also a slightly lower selectivity for SERT.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1619-7089
    Keywords: Key words: Serotonergic neuron ; Selective serotonin reuptake inhibitors ; Receptor binding ; Autoradiography ; Brain imaging
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. Development of selective serotonin transporter (SERT) tracers for single-photon emission tomography (SPET) is important for studying the underlying pharmacology and interaction of specific serotonin reuptake site inhibitors, commonly used antidepressants, at the SERT sites in the human brain. In search of a new tracer for imaging SERT, IDAM (5-iodo-2-[[2-2-[(dimethylamino)methyl]phenyl]thio]benzyl alcohol) was developed. In vitro characterization of IDAM was carried out with binding studies in cell lines and rat tissue homogenates. In vivo binding of [125I]IDAM was evaluated in rats by comparing the uptakes in different brain regions through tissue dissections and ex vivo autoradiography. In vitro binding studyshowed that IDAM displayed an excellent affinity to SERT sites (K i=0.097 nM, using membrane preparations of LLC-PK1 cells expressing the specific transporter) and showed more than 1000-fold of selectivity for SERT over norepinehrine and dopamine (expressed in the same LLC-PK1 cells). Scatchard analysis of [125I]IDAM binding to frontal cortical membrane homogenates prepared from control or p-chloroamphetamine (PCA)-treated rats was evaluated. As expected, the control membranes showed a K d value of 0.25 nM±0.05 nM and a B max value of 272±30 fmol/ mg protein, while the PCA-lesioned membranes displayed a similar K d, but with a reduced B max (20±7 fmol/ mg protein). Biodistribution of[125I]IDAM (partition coefficient =473; 1-octanol/buffer) in the rat brainshowed a high initial uptake (2.44%dose at 2 min after i.v. injection) with the specific binding peaked at 60 min postinjection (hypothalamus-cerebellum/cerebellum =1.75). Ex vivo autoradiographs of rat brain sections (60 min after i.v. injection of [125I]IDAM) showed intense labeling in several regions (olfactory tubercle, lateral septal nucleus, hypothalamic and thalamic nuclei, globus pallidus, central gray, superior colliculus, substantia nigra, interpeduncular nucleus, dorsal and median raphes and locus coeruleus), which parallel known SERT density. This novel tracer has excellent characteristics for in vivo SPET imaging of SERT in the brain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1619-7089
    Keywords: Key words: Serotonin transporter ; Selective serotonin reuptake inhibitor ; 5-Hydroxytryptamine ; Baboon ; Single-photon emission tomography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. A new radioligand, 5-iodo-2-[[2–2-[(dimethylamino)methyl]phenyl]thio]benzyl alcohol ([123I]IDAM), has been developed for selective single-photon emission tomography (SPET) imaging of SERT. In vitro binding studies suggest a high selectivity of IDAM for SERT (K i=0.097 nM), with considerably lower affinities for norepinephrine and dopamine transporters (NET K i= 234 nM and DAT K i〉10 µM, respectively). In this study the biodistribution of SERT in the baboon brain was investigated in vivo using [123I]IDAM and SPET imaging. Dynamic sequences of SPET scans were performed on three female baboons (Papio anubis) after injection of 555 MBq of [123I]IDAM. Displacing doses (1 mg/kg) of the selective SERT ligand (+)McN5652 were administered 90–120 min after injection of [123I]IDAM. Similar studies were performed using a NET inhibitor, nisoxetine, and a DAT blocker, methylphenidate. After 60–120 min, the regional distribution of tracer within the brain reflected the characteristic distribution of SERT, with the highest uptake in the midbrain area (hypothalamus, raphe nucleus, substantia nigra), and the lowest uptake in the cerebellum (an area presumed free of SERT). Peak specific binding in the midbrain occurred at 120 min, with a ratio to the cerebellum of 1.80±0.13. At 30 min, 85% of the radioactivity in the blood was metabolite. Following injection of a competing SERT ligand, (+)McN5652, the tracer exhibited rapid washout from areas with high concentrations of SERT (dissociation rate constant in the midbrain, averaged over three baboons, k off=0.025±0.002 min–1), while the cerebellar activity distribution was undisturbed (washout rate 0.0059± 0.0003 min–1). Calculation of tracer washout rate pixel-by-pixel enabled the generation of parametric images of the dissociation rate constant. Similar studies using nisoxetine and methylphenidate had no effect on the distribution of [123I]IDAM in the brain. These results suggest that [123I]IDAM is suitable for selective SPET imaging of SERT in the primate brain, with high contrast, favorable kinetics, and negligible binding to either NET or DAT.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1619-7089
    Keywords: Striatum ; Single-photon emission tomography ; Dopamine neuron ; 6-OH-dopamine ; Autoradiography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Technetium-99m is the most commonly used radionuclide in routine nuclear medicine imaging procedures. Development of99mTc-labeled receptor-specific imaging agents for studying the central nervous system is potentially useful for evaluation of brain function in normal and disease states. A novel99mTc-labeled tropane derivative, [99mTc]TRODAT 1, which is useful as a potential CNS dopamine transporter imaging agent, was evaluated and characterized. After i.v. injection into rats, [99mTc]TRODAT-1 displayed specific brain uptake in the rat striatal region (striatum-cerebellum/cerebellum ratio 1.8 at 60 min), where dopamine neurons are concentrated. The specific striatal uptake could be blocked by pretreating rats with a dose of competing dopamine transporter ligand, ß-CIT (or RTI-55, i.v., 1 mg/kg). However, the specific striatal uptake of [99mTc]TRODAT-] was not affected by co-injection of excess free ligand (TRODAT-1, up to 200 μg per rat) or by pretreating the rats with haloperidol (i.v., 1 mg/kg). The specific uptake in striatal regions of rats that had prior 6-hydroxydopamine lesion in the substantia nigra area showed a dramatic reduction. The radioactive material recovered from the rat striatal homogenates at 60 min after i.v. injection of [99mTc]TRODAT-1 showed primarily the original compound (〉95%), a good indication of in vivo stability in brain tissue. Similar and comparable organ distribution patterns and brain regional uptakes of [99mTc]TRODAT-1 were obtained for male and female rats. Ex vivo autoradiography results of rat brain sections further confirmed the high uptake and retention of [99mTc]TRODAT-1 in the striatal region. In vitro binding studies measuring the affinity to dopamine transporters for the free ligand, TRODAT-1, and a nonradioactive rhenium derivative, Re-TRODAT-1, showed K i values of 9.7 nM and 14.1 nM, respectively. Behavioral studies in rats using the free ligand, TRODAT-1 and Re-TRODAT-1 indicated that, unlike other tropane derivatives, they displayed no effect on locomotor activity, suggesting low toxicity. These results strongly support the conclusions that this novel99mTc radioligand binds selectively to dopamine transporters in the brain and that is is potentially useful for in vivo assessment of the loss of dopamine neurons in Parkinson's and other neurodegeneralive diseases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Applied mathematics and mechanics 7 (1986), S. 965-970 
    ISSN: 1573-2754
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Mathematics , Physics
    Notes: Abstract In this paper, the author proves by the methods of energy estimates the existence and uniqueness of global strong solutions of barotropic nondivergent model and baroclinic quasi-geostrophic quasi-nondivergent model. The two models are fundamental ones in atmospheric dynamics. The results here generalize the outcome given by the author in [3]–[5] and verify a conjecture posed by Zeng Qing-cun in [1].
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0899-0042
    Keywords: optical column ; HPLC ; diastereoisomer ; 125I ; radioligands ; 8-OH-DPAT ; serotonin receptor ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: (R,S)-trans-8-Hydroxy-2-[N-n-propyl-N-(3′-iodo-2′-propenyl)amino]tetralin 7, a new radioiodinated ligand based on 8-OH-DPAT, was reported as a potential ligand for 5-HT1A receptors. The optically active (+)-(R)- and (-)-(S)-7 were prepared to investigate the stereoselectivity of (R,S)-7. Racemic intermediate 8-methoxy-2-N-n-propyltetralin was reacted with the acyl chloride of (-)-(R)-O-methylmandelic acid to form a mixture of (S,R)- and (R,R)-diastereoisomers, which were separated by flash column chromatography. After removing the N-acyl group from the diastereoisomers, the desired (+)-(R)-or (-)-(S)-7 was obtained by adding an N-iodopropenyl group. In vitro homogenate binding studies showed the stereoselectivity of this new compound for 5-HT1A receptors. (+)-(R)-7 isomer displayed 100-fold higher affinity than the (-)-(S)-7 isomer. Biochemical study indicated that (+)-(R)-7 potently inhibited forskolin-stimulated adenylyl cyclase activity in hippocampal membranes (Emax and EC50 were 24.5% and 5.4 nM, respectively), while (-)-(S)-7 showed no effect at 1 μM. The radioiodinated (+)-(R)- and (-)-(S)-[125I]7 were confirmed by coelution with the resolved unlabeled compound on HPLC (reverse phase column PRP-1, acetonitrile/pH 7.0 buffer, 80/20). The active isomer, (+)-(R)-[125I]7, displayed high binding affinity to 5-HT1A receptors (Kd = 0.09 ± 0.02 nM). In contrast, the (-)-(S)-7 isomer displayed a significantly lower affinity to the 5-HT1A receptor (Kd 〉 10 nM). Thus, (+)-(R)-[125I]trans-8-OH-PIPAT, (+)-(R)-7, an iodinated stereoselective 5-HT1A receptor agonist, is potentially useful for study of in vivo and in vitro function and pharmacology of 5-HT1A receptors in the central nervous system. © 1995 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...