Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) expressing avrRpt2 is specifically recognized by plant cells expressing RPS2 activity, resulting in localized cell death and plant resistance. Furthermore, transient expression of this bacterial avrRpt2 gene in plant cells results in RPS2-dependent cell death. This indicates that the AvrRpt2 protein is recognized inside RPS2 plant cells and is sufficient for the activation of disease resistance-mediated cell death in planta. We explored the possibility that Pst DC3000 delivers AvrRpt2 protein to plant cells via the hrp (type III) secretion pathway. We now provide direct evidence that mature AvrRpt2 protein is secreted from Pst DC3000 and that secretion is hrp dependent. We also show that AvrRpt2 is N-terminally processed when Arabidopsis thaliana plants are infected with Pst DC3000 expressing avrRpt2. Similar N-terminal processing of AvrRpt2 occurred when avrRpt2 was stably expressed in A. thaliana. No cleavage of AvrRpt2 was detected in bacteria expressing avrRpt2 in culture or in the plant extracellular fluids. The N-terminus of AvrRpt2 was not required for RPS2 recognition in planta. However, this region of AvrRpt2 was essential for Pst DC3000-mediated elicitation of RPS2-dependent cell death in A. thaliana leaves.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 50 (2003), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Xanthomonas campestris pathovar vesicatoria (Xcv) uses the type III secretion system (TTSS) to inject effector proteins into cells of Solanaceous plants during pathogenesis. A number of Xcv TTSS effectors have been identified; however, their function in planta remains elusive. Here, we provide direct evidence for a functional role for a phytopathogenic bacterial TTSS effector in planta by demonstrating that the Xcv effector XopD encodes an active cysteine protease with plant-specific SUMO substrate specificity. XopD is injected into plant cells by the TTSS during Xcv pathogenesis, translocated to subnuclear foci and hydrolyses SUMO-conjugated proteins in vivo. Our studies suggest that XopD mimics endogenous plant SUMO isopeptidases to interfere with the regulation of host proteins during Xcv infection.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 30 (1996), S. 723-737 
    ISSN: 1573-5028
    Keywords: Arabidopsis thaliana ; L-isoaspartyl methyltransferase ; seeds ; protein damage ; protein repair
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Protein-L-isoaspartate (D-aspartate) O-methyltransferases (EC 2.1.1.77) that catalyze the transfer of methyl groups from S-adenosylmethionine to abnormal L-isoaspartyl and D-aspartyl residues in a variety of peptides and proteins are widely distributed in procaryotes and eucaryotes. These enzymes participate in the repair of spontaneous protein damage by facilitating the conversion of L-isoaspartyl and D-aspartyl residues to normal L-aspartyl residues. In this work, we have identified an L-isoaspartyl methyltransferase activity in Arabidopsis thaliana, a dicotyledonous plant of the mustard family. The highest levels of activity were detected in seeds. Using degenerate oligonucleotides corresponding to two highly conserved amino acid regions shared among the Escherichia coli, wheat, and human enzymes, we isolated and sequenced a full-length genomic clone encoding the A. thaliana methyltransferase. Several methyltransferase cDNAs were also characterized, including ones that would encode full-length polypeptides of 230 amino acid residues. Messenger RNAs for the A. thaliana enzyme were found in a variety of tissues that did not contain significant amounts of active enzyme suggesting the possibility of translational or posttranslational controls on methyltransferase levels. We have identified a putative abscisic acid-response element (ABRE) in the 5′-untranslated region of the A. thaliana L-isoaspartyl methyltransferase gene and have shown that the expression of the mRNA is responsive to exogenous abscisic acid (ABA), but not to the environmental stresses of salt or drought. The expression of the A. thaliana enzyme appears to be regulated in a distinct fashion from that seen in wheat or in animal tissues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...