Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of computer aided molecular design 14 (2000), S. 435-448 
    ISSN: 1573-4951
    Keywords: DOCK ; FlexX ; PMF scoring ; protein–ligand binding ; stromelysin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract An increasing number of docking/scoring programs are available that use different sampling and scoring algorithms. A reliable scoring function is the crucial element of such approaches. Comparative studies are needed to evaluate their current capabilities. DOCK4 with force field and PMF scoring as well as FlexX were used to evaluate the predictive power of these docking/scoring approaches to identify the correct binding mode of 61 MMP-3 inhibitors in a crystal structure of stromelysin and also to rank them according to their different binding affinities. It was found that DOCK4/PMF scoring performs significantly better than FlexX and DOCK4/FF in both ranking ligands and predicting their binding modes. Most notably, DOCK4/PMF was the only scoring/docking approach that found a significant correlation between binding affinity and predicted score of the docked inhibitors. However, comparing only those cases where the correct binding mode was identified (scoring highest among sampled poses), FlexX showed the best `fine tuning' (lowest rmsd) in predicted binding modes. The results suggest that not so much the sampling procedure but rather the scoring function is the crucial element of a docking program.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Perspectives in drug discovery and design 20 (2000), S. 99-114 
    ISSN: 1573-9023
    Keywords: Helmholtz free energy ; PMF scoring ; protein-ligand binding ; reference state
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Knowledge-based scoring functions have recently emerged as an alternative and very promising way of ranking protein-ligand complexes with known 3D structure according to their binding affinities. Theses implified potential-based approaches use the structural information stored in databases of protein-ligand complexes to derive atom pair interaction potentials also known as potentials of mean force (PMF). The derived PMF depend on the definition of a suitable reference state. The reference states vary among suggested knowledge-based scoring functions. Therefore, we attempt here to shed some light on the influence of different reference state definitions on the predictive power of a knowledge-based scoring function that has been introduced by us very recently [J. Med. Chem., 42 (1999) 791]. It is shown that a reference state that implicitly and more comprehensively accounts for protein and ligand solvation gives the most consistent scoring results for four test sets of diverse protein-ligand complexes taken from the Brookhaven Protein Data Bank. It is also shown that a reference sphere radius of at least 7–8 Å is needed to effectively capture solvation effects that are treated implicitly in the scoring function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 407-423 
    ISSN: 0887-3585
    Keywords: binding free energy ; electrostatics ; group contributions ; thermodynamic cycle ; solvation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The challenge of evaluating absolute binding free energies of protein-protein complexes is addressed using the scaled Protein Dipoles Langevin Dipoles (PDLD/S) model in combination with the Linear Response Approximation (LRA). This is done by taking the complex between Rap1A (Rap) and the p21ras binding domain of c-Raf (Raf-RBD) (Nassar et al., Nature 375:554-560, 1995) as a model system. Several formulations and different thermodynamic cycles are explored taking advantage of the LRA method and considering the protein reorganization during complex formation. The performance of different approximations is examined by comparing the calculated and observed absolute binding energies for the native complex and some of its mutants. The evaluation of the contributions of individual residues to the binding free energy, which is referred to here as group contributions is also examined. Special attention is paid to the role of the “dielectric constant,” εin which is in fact a scaling factor that represents the contributions that are treated implicitly. It is found that explicit consideration of protein relaxation is crucial for obtaining reasonable results with small values of εin, but it is also found that such a treatment of protein-protein interactions is very challenging and does not always give stable results. This indicates that more advanced explicit calculations should be based on experimentally determined structures of both the complex and the isolated proteins. Nevertheless, it is demonstrated that the qualitative trend of the effect of mutations can be reproduced by considering the effect of protein reorganization implicitly, using εin ˜25 for ionized residues and εin ˜4 for polar residues. Thus, it is concluded that an explicit treatment of solvent relaxation (which is common to current continuum models) does not provide sufficient compensation for turning off the charges of ionized residues on the interaction surface of the Raf-RBD/Rap complex. Representing the missing contribution by large εin can, of course, reproduce the observed effect of ionized residues, but now the contribution of uncharged residues will be largely underestimated. Regardless of these conceptual problems, it is established that a very simple nonrelaxed approach, where the relaxation of both the protein and the solvent are considered implicitly, can provide an effective qualitative way for evaluating group contributions, using large and small values for εin of ionized and neutral residues, respectively. As much as the actual system studied is concerned we find that more residues than generally assumed play a role in Raf-RBD/Rap interaction. This includes residues that are not located at the protein-protein interaction surface. These residues contribute to the binding energy through direct charge-charge interaction without leading to drastic structural changes. The overall contribution of the surface residues is quite significant since Raf and Rap are positively and negatively charged, respectively, and their charges are distributed along the interaction site between the two proteins. Proteins 30:407-423, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...