Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 32 (1991), S. 1321-1337 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The subject of this paper is the buckling of laminated plates, with a pre-existing delamination, subjected to in-plane loading. Each laminate is modelled as an orthotropic Mindlin plate. The analysis is carried out by a combination of the finite element and asymptotic expansion methods. By applying the finite element method, plates with general delamination regions can be studied. The asymptotic expansion method reduces the number of unknown variables of the eigenvalue equation to that of the equation for a single Kirchhoff plate. Numerical results for the critical buckling load are presented for several examples. The effects of the shape, size and position of the delamination on the buckling load are studied through these examples.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 40 (1997), S. 797-815 
    ISSN: 0029-5981
    Keywords: meshless ; boundary node method ; element-free Galerkin method ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The Element-Free Galerkin (EFG) method allows one to use a nodal data structure (usually with an underlying cell structure) within the domain of a body of arbitrary shape. The usual EFG combines Moving Least-Squares (MLS) interpolants with a variational principle (weak form) and has been used to solve two-dimensional (2-D) boundary value problems in mechanics such as in potential theory, elasticity and fracture. This paper proposes a combination of MLS interpolants with Boundary Integral Equations (BIE) in order to retain both the meshless attribute of the former and the dimensionality advantage of the latter! This new method, called the Boundary Node Method (BNM), only requires a nodal data structure on the bounding surface of a body whose dimension is one less than that of the domain itself. An underlying cell structure is again used for numerical integration. In principle, the BNM, for 3-D problems, should be extremely powerful since one would only need to put nodes (points) on the surface of a solid model for an object.Numerical results are presented in this paper for the solution of Laplace's equation in 2-D. Dirichlet, Neumann and mixed problems have been solved, some on bodies with piecewise straight and others with curved boundaries. Results from these numerical examples are extremely encouraging. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...