Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The isolation and identification of a prolactin-releasing factor (PRF) from the neuro-intermediate lobe of the pituitary gland has been pursued for over a decade. Using high-pressure liquid chromatography with electrochemical detection (HPLC-ECD) and gas chromatography/mass spectrometry (GC/MS) (R)-salsolinol (SAL) (a dopamine-related stereo-specific tetrahydroisoquinoline) was found to be present in neuro-intermediate lobe as well as median eminence extracts of male, intact-, and ovariectomized female rats. Moreover, analysis of SAL concentrations in neuro-intermediate lobe revealed parallel increases with plasma prolactin in lactating rats exposed to a brief (10 min) suckling stimulus following 4-h separation. SAL appears to be a selective and potent stimulator of prolactin secretion in vivo and it was without effect on the secretion of other pituitary hormones. We have also found that SAL can elevate prolactin release, although to a lesser extent, in pituitary cell cultures as well as in hypophysectomized rats bearing anterior lobe transplants under the kidney capsule. Lack of interference of SAL with [3H]-spiperone binding to AP homogenates indicates that SAL does not act at the dopamine D2 receptor. Moreover, [3H]-SAL binds specifically to homogenate of AL as well as neuro-intermediate lobe obtained from lactating rats. Taken together, our data clearly suggest that SAL is synthesized in situ and this compound can play a role in the regulation of pituitary prolactin secretion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Prolactin is secreted from the anterior lobe of the pituitary gland in response both to suckling and to stress. We recently observed that 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), produced in the neurointermediate lobe of the pituitary gland, as well as in the medial basal hypothalamus, can selectively release prolactin from the anterior pituitary. Therefore, it has been proposed that salsolinol is a putative endogenous prolactin-releasing factor (PRF). Here, we report that one structural analogue of salsolinol, 1-methyl-3,4-dihydroisoquinoline (1MeDIQ), can block salsolinol-induced release of prolactin, but does not affect prolactin release in response to thyrotropin releasing hormone (TRH), α-methyl-p-tyrosine (αMpT) (an inhibitor of tyrosine hydroxylase), domperidone (a D2 dopamine receptor antagonist), or 5-hydroxytryptophan (5-HTP), a precursor of serotonin). 1MeDIQ profoundly inhibited suckling-, immobilization-, as well as formalin-stress induced prolactin release without any influence on corticosterone secretion. The 1MeDIQ-induced reduction in prolactin response to immobilization stress was dose-dependent. These results suggest that salsolinol can play a pivotal role in the regulation of prolactin release induced by either physiological (suckling) or environmental (stress) stimuli.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Journal of neuroendocrinology 14 (2002), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Suckling-induced prolactin release is a widely studied neuroendocrine reflex, comprising a neural afferent and a humoral efferent component. The information on the brain structures involved in this reflex is fairly limited. The present studies focused on this question. The following hypothalamic interventions were made in lactating rats and the dams were tested for the suckling-induced prolactin response: (i) unilateral or (ii) bilateral frontal cuts at the level of the anterior and posterior hypothalamus; (iii) administration of 5,7-dihydroxytryptamine or (iv) 6-hydroxydopamine into the hypothalamic paraventricular nucleus (PVN) to destroy serotonergic and catecholaminergic innervation of the cell group, respectively; (v) lesion of the medial subdivision of the PVN; and (vi) horizontal knife cuts below the PVN. Bilateral posterior and bilateral or unilateral anterior frontal cuts caused blockade of the suckling-induced release of prolactin. Likewise, most dams receiving 5,7-dihydroxytryptamine in the PVN did not respond to the suckling stimulus. Immunocytochemistry revealed that, in those rats which did not show a rise in plasma prolactin, there were almost no serotonergic fibres and terminals in the PVN, while in dams which exhibited a response, numerous serotonergic elements were evident. 6-Hydroxydopamine treatment did not cause significant alteration in the prolactin response. Lesion of the medial, largely parvocellular subdivision of the PVN, or horizontal knife cuts below this cell group, blocked the hormone response. The findings demonstrate for the first time that: (i) interruption of the connections between the brain stem and the hypothalamus interferes with the prolactin response to the suckling stimulus; (ii) serotonergic fibres terminating in the hypothalamic PVN are involved in the mediation of the suckling stimulus; and (iii) within the PVN, neurones in the medial, largely parvocellular subdivision of the cell group take part in the transfer of the neural signal, eventually inducing prolactin release.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neuroendocrinology 17 (2005), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Subcutaneous (s.c.) injection of formalin into rats is frequently used as a painful stressor that produces a three-phase nociceptive response. We have shown previously that s.c. administered formalin (0.2 ml of 4% solution per 100 g body weight) unexpectedly attenuated the increase of plasma epinephrine levels in rats exposed to exteroceptive stressors (handling, immobilisation). To clarify the mechanism(s) responsible for this phenomenon, the effect of formalin applications on epinephrine plasma levels was investigated in various experimental conditions. Subcutaneous application of formalin combined with exposures of animals to an interoceptive stressor, insulin-induced hypoglycaemia, significantly attenuated the stress-induced increase in plasma epinephrine levels, whereas plasma norepinephrine levels remained highly elevated. Moreover, administration of formalin to unstressed animals also manifested signs of an attenuated epinephrine secretion. Interestingly, intraperitoneal administration of formalin did not reduce the elevated levels of plasma epinephrine. We suggest that formalin attenuates epinephrine secretion from the adrenal medulla most probably via irritation of s.c. somatosensory receptors. We hypothesise that the irritation of the primary sensory afferents fibres might reduce the activity of the sympathetic preganglionic neurones innervating adrenal medullary chromaffin cells. Further investigations are required to establish whether the observed reduction of epinephrine secretion from the adrenal medulla is controlled by either spinal or supraspinal neuronal circuits.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...