Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0819
    Keywords: Key words Ruapehu volcano ; Taurewa Formation ; Tephra ; Pyroclastic flow ; Remanent magnetism ; Taurewa eruptive episode ; Volcanic hazard
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The ca. 10,500 years B.P. eruptions at Ruapehu volcano deposited 0.2–0.3 km3 of tephra on the flanks of Ruapehu and the surrounding ring plain and generated the only known pyroclastic flows from this volcano in the late Quaternary. Evidence of the eruptions is recorded in the stratigraphy of the volcanic ring plain and cone, where pyroclastic flow deposits and several lithologically similar tephra deposits are identified. These deposits are grouped into the newly defined Taurewa Formation and two members, Okupata Member (tephra-fall deposits) and Pourahu Member (pyroclastic flow deposits). These eruptions identify a brief (〈ca. 2000-year) but explosive period of volcanism at Ruapehu, which we define as the Taurewa Eruptive Episode. This Episode represents the largest event within Ruapehu's ca. 22,500-year eruptive history and also marks its culmination in activity ca. 10,000 years B.P. Following this episode, Ruapehu volcano entered a ca. 8000-year period of relative quiescence. We propose that the episode began with the eruption of small-volume pyroclastic flows triggered by a magma-mingling event. Flows from this event travelled down valleys east and west of Ruapehu onto the upper volcanic ring plain, where their distal remnants are preserved. The genesis of these deposits is inferred from the remanent magnetisation of pumice and lithic clasts. We envisage contemporaneous eruption and emplacement of distal pumice-rich tephras and proximal welded tuff deposits. The potential for generation of pyroclastic flows during plinian eruptions at Ruapehu has not been previously considered in hazard assessments at this volcano. Recognition of these events in the volcanological record is thus an important new factor in future risk assessments and mitigation of volcanic risk at Tongariro Volcanic Centre.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 62 (2000), S. 199-213 
    ISSN: 1432-0819
    Keywords: Key words Volcanic hazards ; Fiji archaeology ; Monogenetic volcanism ; Volcanic legends
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Taveuni is a Fijian ocean-island volcano that sporadically erupted throughout the Holocene. The 437-km2 island is an active monogenetic volcanic field with a constantly shifting locus of activity along a single apparent rift axis. Although the eruptions were not large ( ≤VEI 2), unexpected shifts in Taveuni volcanism had the potential to affect habitation sites. Since known human settlement of the Fiji Group (ca. 950–750 BC), there have been at least 58 eruptions on Taveuni. Up to 25 of these eruptions potentially affected pre-European inhabitants of the island and at least four former occupation sites are known to have been affected by volcanic products. Despite apparent earliest settlement of Taveuni post-dating other nearby islands by up to 600 years, volcanism probably did not hinder or stall settlement of Taveuni compared with neighbouring islands. However, a period of voluminous eruptions between 300 and 500 AD covered much of south Taveuni with lava and/or thick tephra, apparently causing abandonment of at least this portion of Taveuni until approximately 1100 AD. Most eruptions were not of catastrophic proportions and, due to their localised effects, re-settlement was rapid in marginal unaffected areas. Localised stories and a relict place name survive to describe former eruption locations and effects since approximately 120–320 AD. Knowledge of the impacts on Taveuni's past inhabitants forms the basis of volcanic disaster-mitigation strategies to minimise future effects on the current 14,500 residents.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...