Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The relationship between plant species diversity and ecosystem CO2 and water vapour fluxes was investigated for planted calcareous grassland communities composed of 5, 12, or 32 species assembled from the native plant species pool. These diversity manipulations were done in factorial combination with a CO2 enrichment experiment in order to investigate the degree to which ecosystem responses to elevated CO2 are altered by a loss of plant diversity. Ecosystem CO2 and H2O fluxes were measured over several 24-h periods during the 1994 and 1995 growing seasons. Ecosystem CO2 assimilation on a ground area basis decreased with decreasing plant diversity in the first year and this was related to a decline in above-ground plant biomass. In the second year, however, CO2 assimilation was not affected by diversity, and this corresponded to the disappearance of a diversity effect on above-ground biomass. Irrespective of diversity treatment, CO2 assimilation on a ground area basis was linearly related to peak above-ground biomass in both years. Elevated CO2 significantly increased ecosystem CO2 assimilation in both years with no interaction between diversity and CO2 treatment, and no corresponding increase in above-ground biomass. There were no significant effects of diversity on water vapour flux, which was measured only in the second year. There were indications of a small CO2 effect on water vapour flux (3–9% lower at elevated CO2 depending on the light level). Our findings suggest that decreasing plant species diversity may substantially decrease ecosystem CO2 assimilation during the establishment of such planted calcareous grassland communities, but also suggest that this effect may not persist. In addition, we find no evidence that plant species diversity alters the response of ecosystem CO2 assimilation to elevated CO2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Nutrient-poor grassland on a silty clay loam overlying calcareous debris was exposed to elevated CO2 for six growing seasons. The CO2 exchange and productivity were persistently increased throughout the experiment, suggesting increases in soil C inputs. At the same time, elevated CO2 lead to increased soil moisture due to reduced evapotransporation. Measurements related to soil microflora did not indicate increased soil C fluxes under elevated CO2. Microbial biomass, soil basal respiration, and the metabolic quotient for CO2 (qCO2) were not altered significantly. PLFA analysis indicated no significant shift in the ratio of fungi to bacteria. 0.5 m KCl extractable organic C and N, indicators of changed DOC and DON concentrations, also remained unaltered. Microbial grazer populations (protozoa, bacterivorous and fungivorous nematodes, acari and collembola) and root feeding nematodes were not affected by elevated CO2. However, total nematode numbers averaged slightly lower under elevated CO2 (−16%, ns) and nematode mass was significantly reduced (−43%, P = 0.06). This reduction reflected a reduction in large-diameter nematodes classified as omnivorous and predacious. Elevated CO2 resulted in a shift towards smaller aggregate sizes at both micro- and macro-aggregate scales; this was caused by higher soil moisture under elevated CO2. Reduced aggregate sizes result in reduced pore neck diameters. Locomotion of large-diameter nematodes depends on the presence of large enough pores; the reduction in aggregate sizes under elevated CO2 may therefore account for the decrease in large nematodes. These animals are relatively high up the soil food web; this decline could therefore trigger top-down effects on the soil food web. The CO2 enrichment also affected the nitrogen cycle. The N stocks in living plants and surface litter increased at elevated CO2, but N in soil organic matter and microbes remained unaltered. Nitrogen mineralization increased markedly, but microbial N did not differ between CO2 treatments, indicating that net N immobilization rates were unaltered. In summary, this study did not provide evidence that soils and soil microbial communities are affected by increased soil C inputs under elevated CO2. On the contrary, available data (13C tracer data, minirhizotron observations, root ingrowth cores) suggests that soil C inputs did not increase substantially. However, we provide first evidence that elevated CO2 can reduce soil aggregation at the scale from µm to mm scale, and that this can affect soil microfaunal populations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...