Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Calcium current ; Cerebellar granule neuron ; Heloderma ; Helodermine ; Ion channel block ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Helothermine (HLTx), a 25.5-kDa peptide toxin isolated from the venom of the Mexican beaded lizard (Heloderma horridum horridum), was found to be an inhibitor of Ca2+ channels in cerebellar granule cells of newborn rats. Macroscopic currents, carried by 10 mM Ba2+, were measured in whole-cell configuration. The toxin at the saturating dose of 2.5 μM reversibly produced an ≈67% block of the voltage-dependent Ca2+ current by a fast mechanism of action. The current inhibition and recovery were reached in less than 1 min. Inhibition was concentration-dependent, with a half-effective dose of 0.25 μM. The current block was practically voltage-independent, whereas the steady-state inactivation h ∞ was significantly affected by HLTx (≈10 mV). The toxin did not affect the activation and inactivation kinetics of the Ca2+ current. Experiments with other Ca2+ channel blockers showed that HLTx abolished ω-conotoxin GVIA-sensitive Ca2+ currents, as well as ω-AgaIVA- and dihydropyridine-sensitive Ca2+ currents. These drugs had virtually no effect when HLTx was applied first. The present results indicate that HLTx produce a high-potency blockage of the three pharmacologically distinct Ca2+ current components.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 23 (1994), S. 189-195 
    ISSN: 1432-1017
    Keywords: Neurones ; Ca2+ channels ; Temperature ; Patch-clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract The temperature dependence of high voltage activated Ca2+ channels has been investigated in cultured dorsal root ganglion neurones from chick embryos, using the cell-attached patch-clamp technique. The dihydropyridine sensitive L-type Ca2+ channel had a conductance of 23 pS, with 110 mM Ba2+ as charge carrier and in the presence of 3 μM Bay K 8644. When the temperature was raised from 15 to 30 °C, the unitary channel current amplitude increased, with Q10 value equal to 1.4. The rising phase of the averaged single-channel current became faster, with Q10 value 2.7, whereas the decay phase showed a lower temperature sensitivity. Channel open probability decreased according to an exponential distribution of open and closed times. A second type of Ca2+ channel was identified, which was DHP-insensitive and had a lower conductance with a mean value equal to 13 pS. For the current amplitude, the Q10 value was 1.3. Both activation and inactivation kinetics were strongly accelerated by an increase in temperature. The corresponding time constants gave Q10 values equal to 5.9 for activation, and 2.0 for inactivation. Peak channel open probability was highly sensitive to a change in temperature, with a Q10 value of 1.6. Finally, in ω-conotoxin GVIA pre-treated neurones, a non-inactivating DHP-insensitive Ca2+ channel with the lowest unitary conductance (10 pS) and a much lower temperature dependence was recorded. Single-channel current was increased by heating, with Q10 value 1.3, whereas the channel kinetics were almost unaffected by temperature. Our data are consistent with the assumption that the different temperature dependence of the Ca2+ channel behaviours may be explained by separate gating processes of three types of Ca2+ channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 413 (1988), S. 99-101 
    ISSN: 1432-2013
    Keywords: patch-clamp technique ; human fibroblasts ; maxi-K+ channels ; Ca2+-sensitivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The patch clamp technique was used to reveal single channel activity in the membrane of human cultured fibroblasts. The most frequently detected ion channel type was a Ca2+-dependent K+ channel with a conductance of 287±38 pS in symmetrical 130 mM KCl. The channel showed a peculiar low Ca2+-sensitivity compared to that of similar channels in other preparations. In fact micromolar values of internal Ca2+ were not effective in the channel activation, except at high depolarizing membrane potentials. The activity was highly increased only when the channel was exposed to relatively high internal Ca2+ concentrations (0.2–2.0 mM).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...