Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Osteoarthritis is the most common form of human arthritis. We investigated the potential role of asporin, an extracellular matrix component expressed abundantly in the articular cartilage of individuals with osteoarthritis, in the pathogenesis of osteoarthritis. Here we report a significant ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0827
    Keywords: Ipriflavone ; Osteoclasts ; Pit formation ; Bone resorption
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary Effects of ipriflavone (7-isopropoxyisoflavone) on osteoclast-induced bone resorption were evaluated using an unfractionated bone cell culture system containing mature osteoclasts from the femur and tibia of newborn mice. When cells were cultured for 4 days on dentin slices in the presence of 5% fetal bovine serum and 10−8 M 1α,25(OH)2D3, ipriflavone (3 x 10−7-3 x 10−5 M) inhibited pit formation and caused a decrease in the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs). The lowest significant effect was observed at a concentration of 10−6 M. Unlike ipriflavone, calcitonin inhibited pit formation 4 days after the culture was started without affecting the number of TRAP-positive MNCs. Ipriflavone still inhibited pit formation when the culture period was 13 days, when new osteoclasts were expected to be formed. These findings suggest that ipriflavone inhibits new osteoclast formation and bone resorption at the cellular level.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0827
    Keywords: Ipriflavone ; Osteoblast ; Bone-like tissue formation ; Collagenous fibril networks
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary The effects of ipriflavone (IP) (10−5 M) on bone formation were studied in stromal cells from the femoral bone marrow of young adult rats cultured for 21 days in the presence of β-glycerophosphate and dexamethasone. Stereoscopic microscopy showed nodule formation after 14 days of culturing, and both the number and the size of the nodules increased with time. The alizarin-red-stained calcified area in the nodules in the IP group was nearly 4 times as large as that in the control after 21 days. Light and electron microscopy revealed the presence of many osteoblast-like cells with developed rough endoplasmic reticulum and Golgi apparatus in the nodules in the control group after 14 days, and a collagenous fibril network was seen among the cells. After 21 days, calcification of the dense collagenous fibril network and bone matrix-like tissue were observed in many nodules, resulting in the formation of bone-like tissue containing osteocyte-like cells. In the IP group, the collagenous fibril network area in the nodules was greater than that in the control after 14 days, and a further increase in both the dense collagenous fibril network area and calcified bone-like tissue area was observed after 21 days. These findings indicate that IP stimulates bone-like tissue formation in the rat bone marrow stromal cell culture, suggesting that the promotion of collagen production by osteoblasts is involved in the stimulation of bone-like tissue formation by IP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0827
    Keywords: Ipriflavone ; Unfractionated bone cells ; Osteoclasts ; Bone resorption
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary To study the effect of ipriflavone on osteoclast-mediated bone resorption and new osteoclast formation, we used an unfractionated bone cell culture system containing mature osteoclasts from femur and tibia of newborn mice. Ipriflavone (10−5 M) inhibited pit formation on dentin slices and caused a decrease in the number of tartrate-resistant acid phosphatase (TRAP)-positive (+) multinucleate cells (MNCs) in a 4-day culture period in which no increase in the number of TRAP(+)-MNCs was observed in the presence of 5% fetal bovine serum (FBS) and 10−8 M 1α,25-dihydroxy-vitamin D3 (1α,25(OH)2D3). During the following 12 days, both the total area of the pits and the number of TRAP(+)-MNCs increased in the control. Continuous treatment with ipriflavone also inhibited the increase in pit area during this period. These effects of ipriflavone were reversible. Furthermore, the differentiation of osteoclasts was examined when preexisting TRAP(+)-MNCs were removed by incubation in the absence of 1α,25(OH)2D3 for the initial 4 days in culture dishes without dentin slices. When 1α,25(OH)2D3 and ipriflavone were added to the medium on the 4th day, ipriflavone inhibited new TRAP(+)-MNC formation stimulated by 1α,25(OH)2D3 in a dose-dependent manner. However, pretreatment of the cells with ipriflavone before the addition of 1α,25(OH)2D3 did not inhibit TRAP(+)-MNC formation. These results indicate that ipriflavone inhibits both the activation of mature osteoclasts and the formation of new osteoclasts without affecting growth of TRAP-negative progenitor cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 53 (1993), S. 71-72 
    ISSN: 1432-0827
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...