Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Nitric oxide (NO) is produced by the enzyme NO synthase (NOS) and may be involved in the regulation of nutrient and endocrine homeostasis via actions on neurones of the hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei. The effects of water deprivation or food deprivation for 4 days on the abundance of messenger RNA encoding NOS in these nuclei in rats were examined using in situ hybridization. Water deprivation markedly increased the abundance of NOS mRNA in both the SON and PVN (225±11% of control, P〈0.05 and 261±34% of control, P〈0.01 respectively). NOS mRNA abundance also appeared to be increased in magnocellular accessory nuclei. Food deprivation decreased NOS mRNA abundance in the SON and PVN (42±6% and 52±7% of control respectively, both P〈0.05), while withdrawal of both food and water produced no significant net changes in the abundance of NOS mRNA. Treatment-induced alterations in NOS mRNA abundance were reflected by changes in NOS activity, as assessed by NADPH-diaphorase histochemistry, and NADPH-diaphorase staining was observed in neurones both positive and negative for oxytocin-like immunoreactivity. These findings suggest that NOS mRNA abundance, NOS enzymatic activity and presumably NO production are modulated in an activity-dependent manner in hypothalamic (magnocellular and parvocellular) neurones by alterations in fluid and nutrient homeostasis, and support data from other studies suggesting a role for NO in the central regulation of water and food intake in the rat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Glutamate transmitter ; NMDA ; Glycine ; Receptors ; Autoradiography ; Heterogeneity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The possible heterogeneity of the agonist and glycine sites of the N-methyl-D-aspartate (NMDA) receptor-complex was examined using receptor binding techniques. Binding of [3H]L-glutamate ([3H]GLU) and [3H]glycine to synaptic membranes of cerebral and cerebellar cortices, and membranes of a granule cell preparation of rat cerebellum, was characterized. [3H]Glycine always labelled a single population of sites; densities of binding sites (Bmax) in cortical, cerebellar and “granule” membranes were 3.1, 0.87 and 3.6 pmol/mg protein, respectively. Dissociation constants (Kd) in the same three preparations were 0.13, 0.31 and 1.9 μM, respectively. In competition studies, D-cycloserine, but not D-serine and 7-chlorokynurenate, showed varying potency between the membrane preparations, and analysis of variance (ANOVA) revealed a significant interaction between ligands and membrane fractions. Binding of [3H]GLU was saturable and to a single population of sites: Kd 0.5–0.9 μM and Bmax 3.2–3.6 pmol/mg protein. In all three membrane preparations the rank order of potency of NMDA agonists as inhibitors of the binding of [3H]GLU was always L-aspartate〉L-cysteate〉L-cysteinesulphinate〉L-serine-O-sulphate〉ibotenate〉L-homocysteate. NMDA, quinolinate and competitive NMDA antagonists were only weak inhibitors of the binding of [3H]GLU and never fully inhibited specific binding. Other subtype-selective excitatory amino acids were very weak or ineffective inhibitors of binding. Binding of NMDA agonists was better described by a two site model whereby the proportion of high affinity sites did not vary significantly across the three membrane preparations. Although the binding of [3H]GLU was relatively insensitive to NMDA itself and competitive NMDA antagonists, binding may be to a recognition site for NMDA-like agonists, since they fully inhibited specific binding. This excitatory amino acid recognition for NMDA agonists was conserved in the three membrane preparations. In cortical and “granule” membranes the Bmax values for the binding of [3H]GLU and [3H]glycine had a stoichiometry of 1∶:1, whilst in cerebellar synaptic membranes this ratio was 4∶:1. Receptor autoradiography of NMDA-related [3H]GLU and [3H]glycine binding in tissue sections failed to reveal any differential labelling patterns in cerebral cortex and cerebellum. In the cerebellum, densities of silver grains found with both [3H]ligands were concentrated in the granule cell layer relative to the molecular layer, but the differences detected in membrane binding studies were not observed in cerebellum. Our findings suggest the existence of three types of heterogeneity for the glycine domain of the NMDA receptor: (1) differing affinities for glycine, (2) differing pharmacological profiles, and (3) differing stoichiometry in relation to the putative NMDA-like agonist site. Our evidence supports an hypothesis for the existence of multiple glycine domains which might differentially modulate NMDA-mediated neurotransmission.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...