Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 19 (2004), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Recent work has revealed that signalling via the p42/44 mitogen-activated protein kinase (MAPK) pathway couples light to entrainment of the circadian clock located in the suprachiasmatic nucleus (SCN). Given that many effects of the MAPK pathway are mediated by intermediate kinases, it was of interest to identify kinase targets of ERK in the SCN. One potential target is the family of 90-kDa ribosomal S6 kinases (RSKs). In this study, we examined light-induced regulation of RSK-1 in the SCN. Immunohistochemical and Western analysis were used to show that photic stimulation during the early and late night triggered the phosphorylation of RSK-1 at two sites that are targeted by ERK. This increase in the phosphorylation state of RSK-1 corresponded with an approximate fourfold increase in kinase activity. Light exposure during the subjective day did not increase the phosphorylated form of RSK-1, indicating that the capacity of light to stimulate RSK-1 activation is phase-restricted. Double immunofluorescent labelling of SCN tissue revealed the colocalized expression of the activated form of ERK with the phosphorylated form of RSK-1 following a light pulse. In vivo pharmacological inhibition of light-induced MAPK pathway activation blocked RSK-1 phosphorylation, indicating that RSK-1 activity is regulated by the MAPK pathway. PDK-1, a coregulator of RSK-1, is also expressed in the SCN and is likely to contribute to RSK-1 activity. RSK-1 phosphorylation was also rhythmically regulated within a subset of phospho-ERK-expressing cells. Together these results identify RSK-1 as a light- and clock-regulated kinase and raise the possibility that it contributes to entrainment and timing of the circadian pacemaker.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 17 (2003), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Signalling via the p42/44 mitogen-activated protein kinase (MAPK) pathway has been identified as an intermediate event coupling light to entrainment of the mammalian circadian clock located in the suprachiasmatic nucleus (SCN). Given this observation, it was of interest to determine where within the entrainment process the MAPK pathway was functioning. In this study, we examined the role of the MAPK pathway as a regulator of light-induced gene expression in the SCN. Towards this end, we characterized the effect pharmacological disruption of the MAPK cascade has on the expression of the immediate-early genes c-Fos, JunB and EGR-1. We report that uncoupling light from MAPK pathway activation attenuated the expression of all three gene products. In the absence of photic stimulation, inhibition of the MAPK pathway did not alter basal gene product expression levels. Light-induced activation of cAMP response element (CRE)-dependent transcription, as assessed using a CRE-LacZ transgenic mouse strain, was also disrupted by blocking MAPK pathway activation. These results reveal that the MAPK cascade functions as one of the first transduction steps leading from light to rapid transcriptional activation, an essential event in the entrainment process. MAPK pathway-dependent gene expression in the SCN may result, in part, from stimulation of CRE-dependent transcription.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...