Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Peripheral-type benzodiazepine binding sites (PTBBS) are markedly increased in the injured CNS. Astrocytes appear to be the primary cell type which express increased PTBBS. Because certain cytokines within the injured CNS are potent mitogens for astrocytes, we examined the effects of two such cytokines, interleukin (IL)-1β and tumor necrosis factor (TNF), on PTBBS in cultured astrocytes using [3H]Ro 5-4864 as the specific ligand. Purified cultures of either polygonal or process-bearing astrocytes were prepared from neonatal rat cerebral hemispheres. At a concentration of 1.8 nM, specific binding of the radioactive ligand to polygonal astrocytes reached equilibrium within 60 min and was half-maximal by 5–10 min. By contrast, specific binding to process-bearing astrocytes barely exceeded background levels. IL-1 and TNF increased PTBBS within polygonal astrocytes in both dose- and time-dependent manners. At 10–50 ng/ml, IL-1β and TNF-α elevated [3H]Ro 5–4864 binding in polygonal astrocyte cultures 65 and 87%, respectively, above the level in control cultures. However, no changes in PTBBS were seen within polygonal astrocytes after IL-2 treatment. Scatchard analysis of saturation binding experiments suggested that the increase in PTBBS promoted by TNF was due to an increased number of binding sites present in polygonal astrocytes and not due to an increase in receptor affinity. Binding data suggested that PTBBS within cultures of process-bearing astrocytes were virtually absent irrespective of the treatment. These in vitro data suggest that certain cytokines found in the injured brain may be involved in up-regulating PTBBS within a particular subtype of astrocyte.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: In this report we demonstrate that a defective herpes simplex virus type one (HSV-1) vector can express enzymatically active tyrosine hydroxylase in cultured striatal cells that are thereby converted into l-DOPA-producing cells. A human tyrosine hydroxylase cDNA (form II) was inserted into an HSV-1 vector (pHSVth) and packaged into virus particles using an HSV-1 strain 17 mutant in the immediate early 3 gene (either ts K or D30EBA) as helper virus. Cultured fibroblasts were infected with pHSVth and 1 day later tyrosine hydroxylase immunoreactivity and tyrosine hydroxylase enzyme activity were observed. The tyrosine hydroxylase enzyme activity directed the production of l-DOPA. pHSVth infection of striatal cells in dissociated cell culture resulted in expression of tyrosine hydroxylase RNA and tyrosine hydroxylase immunoreactivity. Release of l-DOPA and low levels of dopamine were observed from cells in pHSVth-infected striatal cultures. Expression of tyrosine hydroxylase and release of catecholamines were maintained for at least 1 week after infection.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: To assess the role of Bcl-XL and its splicederivative, Bcl-Xs, in staurosporine-induced cell death, we used adopaminergic cell line, MN9D, transfected with bcl-xL(MN9D/Bcl-XL), bcl-xs (MN9D/Bcl-Xs),or control vector (MN9D/Neo). Only 8.6% of MN9D/Neo cells survived after 24 hof 1 μM staurosporine treatment. Caspase activity was implicatedbecause a caspase inhibitor,N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-fmk),attenuated staurosporine-induced cell death. Bcl-XL rescued MN9Dcells from death (89.4% viable cells), whereas Bcl-Xs had little orno effect. Bcl-XL prevented morphologically apoptotic changes aswell as cleavage of poly(ADP-ribose)polymerase (PARP) induced bystaurosporine. It is interesting that a small Bax-immunoreactive proteinappeared 4-8 h after PARP cleavage in MN9D/Neo cells. The appearance of thesmall Bax-immunoreactive protein, however, may be cell type-specific as it wasnot observed in PC12 cells after staurosporine treatment. The sequentialcleavage of PARP and the appearance of the small Bax-immunoreactive protein inMN9D cells were blocked either by Z-VAD-fmk or by Bcl-XL. Thus, ourpresent study suggests that Bcl-XL but not Bcl-Xs prevents staurosporine-induced apoptosis by inhibiting the caspase activation that may be directly or indirectly responsible for the appearance of the small Bax-immunoreactive protein in some types of neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Two cysteine protease families, caspase and calpain, are known to participate in cell death. We investigated whether a stress-specific protease activation pathway exists, and to what extent Bcl-2 plays a role in preventing drug-induced protease activity and cell death in a dopaminergic neuronal cell line, MN9D. Staurosporine (STS) induced caspase-dependent apoptosis while a dopaminergic neurotoxin, MPP+ largely induced caspase-independent necrotic cell death as determined by morphological and biochemical criteria including cytochrome c release and fluorogenic caspase cleavage assay. At the late stage of both STS- and MPP+-induced cell death, Bax was cleaved into an 18-kDa fragment. This 18-kDa fragment appeared only in the mitochondria-enriched heavy membrane fraction of STS-treated cells, whereas it was detected exclusively in the cytosolic fraction of MPP+-treated cells. This proteolytic cleavage of Bax appeared to be mediated by calpain as determined by incubation with [35S]methionine-labelled Bax. Thus, cotreatment of cells with calpain inhibitor blocked both MPP+- and STS-induced Bax cleavage. Intriguingly, overexpression of baculovirus-derived inhibiting protein of caspase, p35 or cotreatment of cells with caspase inhibitor blocked STS- but not MPP+-induced Bax cleavage. This appears to indicate that calpain activation may be either dependent or independent of caspase activation within the same cells. However, cotreatment with calpain inhibitor rescued cells from MPP+-induced but not from STS-induced neuronal cell death. In these paradigms of dopaminergic cell death, overexpression of Bcl-2 prevented both STS- and MPP+-induced cell death and its associated cleavage of Bax. Thus, our results suggest that Bcl-2 may play a protective role by primarily blocking drug-induced caspase or calpain activity in dopaminergic neuronal cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: To examine the correlation between the structure of Bcl-2and its inhibitory function of c-Jun N-terminal kinase (JNK) and caspaseactivity, we established a dopaminergic neuronal cell line, MN9Doverexpressing Bcl-2 (MN9D/Bcl-2) or its structural mutants. The mutantscomprised a point mutation in the BH1 (G145A; MN9D/BH1) or BH2 (W188A;MN9D/BH2) domain and a deletion mutation in the C-terminal (MN9D/C22), BH3(MN9D/BH3), or BH4 (MN9D/BH4) domain. As determined by the TUNEL (terminaldeoxynucleotidyltransferase nick end-labeling) and MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] reductionassay, apoptotic death of MN9D/Neo cells reached 80-90% within 24 h inresponse to 1 μM staurosporine. Upon staurosporine treatment, JNK activity increased six- to sevenfold over the basal level within 2-4 h. Treatment of MN9D/Neo with both staurosporine and a caspase inhibitor, Z-VAD, attenuated cell death without suppressing JNK activation. Both staurosporine-induced cell death and JNK activation were attenuated in MN9D/Bcl-2. As determined by cleavage of poly(ADP-ribose) polymerase into 85 kDa, Bcl-2 blocked caspase activity as well. When cells overexpressing one of the Bcl-2 mutants were treated with staurosporine, death was attenuated in MN9D/BH1, MN9D/BH2, and MN9D/C22 but not in MN9D/BH3 and MN9D/BH4. Similarly, both JNK and caspase activation were blocked in MN9D/BH1, MN9D/BH2, and MN9D/C22, whereas they were not suppressed in MN9D/BH3 and MN9D/BH4. Taken together, our data indicate that there exists a close structural and functional correlation of Bcl-2 to JNK and caspase activity in staurosporine-induced dopaminergic neuronal cell death.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We attempted to ascertain the neuroprotective effects and mechanisms of minocycline in inflammatory-mediated neurotoxicity using primary neuron/glia co-cultures treated with lipopolysaccharide (LPS). Neuronal cell death was induced by treatment with LPS for 48 h, and the cell damage was assessed using lactate dehydrogenase (LDH) assays and by counting microtubule-associated protein-2 (MAP-2) positive cells. Through terminal transferase deoxyuridine triphosphate-biotin nick end labeling (TUNEL)-staining and by measuring caspase-3 activity, we found that LPS-induced neuronal cell death was mediated by apoptosis. We determined that pre-treatment with minocycline significantly inhibited LPS-induced neuronal cell death. In addition, LPS induced inducible nitric oxide synthase (iNOS) expression significantly, resulting in nitric oxide (NO) production within glial cells, but not in neurons. Both nitric oxide synthase (NOS) inhibitors (NG-monomethyl-l-arginine monoacetate (l-NMMA) and S-methylisothiourea sulfate (SMT)) and minocycline inhibited iNOS expression and NO release, and increased neuronal survival in neuron/glia co-cultures. Pre-treatment with minocycline significantly inhibited the rapid and extensive production of tumor necrosis factor-alpha (TNF-α) mediated by LPS in glial cells. We also determined that the signaling cascade of LPS-mediated iNOS induction and NO production was mediated by TNF-α by using neutralizing antibodies to TNF-α. Consequently, our results show that the neuroprotective effect of minocycline is associated with inhibition of iNOS induction and NO production in glial cells, which is mediated by the LPS-induced production of TNF-α.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...