Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 15 (2002), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Previous studies have shown that activity of neuronal populations in the primary motor cortex (MI), processed by the population vector method, faithfully predicts upcoming movements. In our previous studies we found that single neurons responded differently during movements of one arm vs. combined movements of the two arms. It was, therefore, not clear whether the population vector approach could produce reliable movement predictions also for bimanual movements. This study tests this question by comparing the predictive quality of population vectors for unimanual and bimanual arm movements. We designed a bimanual motor task that requires coordinated movements of the two arms, in which each arm may move in eight directions, and recorded single unit activity in the MI of two rhesus (Macaca mulatta) monkeys during the performance of unimanual and bimanual arm movements. We analysed the activity of 212 MI cells from both hemispheres and found that, despite bimanual related activity, the directional tuning and preferred directions of most cells were preserved in unimanual and bimanual movements. We demonstrate that population vectors, constructed from the activity of MI cells, predict accurately the direction of movement both for unimanual and for bimanual movements even when the two arms move simultaneously in different directions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 7 (1995), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In this study, the formation of the corticotectal projection of the rat in organotypic slice culture was investigated, using both anatomical and physiological approaches. The establishment of fibre connections from visual cortex to superior colliculus explants was monitored after 3, 6, 14, 20 and 30 days in vitro by cortical injections of Dil. As in cortical cultures without cocultured colliculus, fibres anterogradely labelled by this procedure spread radially from the injection site into the surroundings of the explant, without displaying any directional preference. Especially, layer V pyramidal cells could be seen to extend processes not only to the collicular target, but also in the opposite direction, suggesting that no axonal guidance was exerted by the projection target. The total number of fibres projecting in the direction of the colliculus was not higher than of those projecting in the opposite direction. However, fibres projecting into the colliculus were significantly longer. This was also the case when the colliculus was placed next to the pial side of the cortical explant, indicating that outgrowth direction was not related to this observation. We therefore assume a chemotrophic rather than a chemotactic influence of the projection target on cortical axons, which is based on direct contact of axons to the target tissue. It cannot be excluded, however, that the failure to detect chemotactic guidance was caused by the lack of diffusion gradients in our culture system. Innervation of the collicular slice exclusively originated from layer V pyramidal cells, irrespective of the position of the collicular target. Fibre courses suggested that discrimination of the projection target was achieved upon encounter with the collicular surface by direct membrane contact. Inside the collicular tissue, fibre arborizations occurred preferredly in up to three layers perpendicular to the surface. Even after the smallest tracer injections, termination fields were diffusely distributed over the collicular slice. Also, the spatial distribution of retrogradely stained projection neurons did not differ statistically from an equal distribution. Thus, a high degree of convergence and divergence was observed anatomically in the corticotectal projection formed in vitro, corresponding to the immature state in vivo. The functionality of the corticotectal projection was assessed by intracellular recordings from collicular neurons. Electrophysiological properties, such as membrane potential (-68 ± 11 mV), membrane resistance (35.4 ± 27.7 Mω) and the time constant (3.0 ± 2.1 ms) were comparable to reference values, confirming the viability of our culture preparation. The functionality of corticotectal transmission was revealed by intracellularly recorded responses of collicular cells to extracellular cortical stimulation. Most responses were excitatory (90%), although inhibitory responses were also encountered (10%). High-frequency stimulation suggested polysynaptic transmission in all cases tested. Responses from single collicular cells could always be elicited from various cortical stimulation sites, which were usually distributed over the whole cortical explant, confirming the high degree of convergence suggested by the anatomical results. Conduction velocities of corticotectal fibres were estimated to be ∼0.3 m/s, indicating that the fibres of the corticotectal connection in vitro were probably unmyelinated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...