Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Mg-skarns enclosed in dunite cumulates of the Neo-Proterozoic Ioko-Dovyren intrusion (northern Baikal region, Russia) can be traced to silica-poor dolomitic host rock layers. The dominant minerals of the skarns are brucite (pseudomorph after periclase), forsterite and Cr-poor spinel. Rapid heating of quartz-poor dolomitic xenoliths led to the formation of minor olivine, followed by the breakdown of dolomite to calcite and periclase. Xenoliths were partially melted upon further heating resulting in a calcite melt. This low-density melt was quantitatively squeezed out, mixed with the surrounding mafic magma and left behind periclase and olivine. This caused the crystallization of new olivine with elevated CaO contents in zones above skarn-bearing horizons. Mixing of calcite melt with the surrounding mafic magma also resulted in the crystallization of Cats-rich clinopyroxene instead of plagioclase. The mineralogy of contaminated dunite cumulates is consistent with assimilation of approximately 4wt% CaO by the Ioko-Dovyren mafic magma.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1866
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Dovyren layered dunite–troctolite–gabbro massif (northern Transbaikalia region, Russia) contains precious metal mineralization related to sparsely disseminated sulfides (Stillwater type). The distribution of gases trapped in micro-inclusions and intergranular pores of the Dovyren massif has been investigated. This type of study had previously only been undertaken on the traps or peridotite–pyroxenite–norite intrusions hosting copper–nickel sulfide deposits. A novel method of analyzing trapped gases, involving the grinding of samples under high vacuum at room temperature, was employed. A modified gas-chromatography and mass-spectrometry approach was used to analyze the composition of the extracted gases. The concentrations of reduced gases (CH4 and H2) are higher in inclusions trapped by silicate minerals, whereas oxidized gases (H2O, CO2) are less common. The content of reduced gases (H2, CH4, CO), N2, He, radiogenic Ar, and C2H6 increases upward through the layered series of the massif. The distribution of all gases, especially methane and hydrogen, show peak concentrations coincident with the PGE and gold reef type horizons. A correlation of the gas peaks and noble metal contents appears to be related to their geochemical affinities. This conclusion is supported by the experimental modeling.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...