Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 37 (1989), S. 1514-1518 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 33 (1985), S. 72-78 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 27 (1979), S. 702-706 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 101 (1974), S. 35-44 
    ISSN: 1432-072X
    Keywords: Bacillus megaterium ; Magnesium ; Microbeads ; Microenvironment ; Particle Effects ; Respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cells of Bacillus megaterium growing in the presence of glass microbeads with average diameters of 29 and 53 μm were frequently filamentous and sometimes reached lengths of 600 μm. Some of the filaments were nonseptate. The formation of filaments was prevented by magnesium but not by several other cations. In media with supplemental magnesium, the time required before active proliferation commenced was inversely related to the diameter of the particles. B. megaterium growing in media with the smaller size beads consumed oxygen and utilized glucose at greater rates than bacteria in media with the larger spheres or in bead-free solutions, and the uptake of oxygen was maintained for a longer period.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 14 (1995), S. 312-318 
    ISSN: 1476-5535
    Keywords: Tetraethyllead ; Antiknock agent ; Biological degradation ; Chemical degradation ; Metabolites ; Soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The objective of this study was to determine the disappearance of the leaded gasoline enhancer tetraethyllead (TEL), formation of degradation products, and mass balance in nonsterile and autoclaved Leon and Madison soils. Ethyl-1-14C-labeled TEL was used so that mineralization rates of TEL and mass balance could be determined.14C-TEL in nonsterile and autoclaved surface and subsurface samples of the two soils disappeared rapidly, and ionic ethyllead products, water soluble nonlead organic products and bound residues were rapidly formed. A small fraction (≤7.74%) of14C-TEL in nonsterile soil samples was mineralized to14CO2 in 28 days. Triethyllead (TREL) was the major ionic ethyllead product detected in both nonsterile and autoclaved soils; diethyllead (DEL) was occasionally detected. Recovery of14C from mass balance studies for all nonsterile and autoclaved soil samples after 28 days of incubation was poor, less than 50% of the14C applied. It appears that unknown volatile and/or gaseous organic products were the major degradation products of TEL in soils. Based on the observations of more rapid initial disappearance of14C-TEL, more rapid formation and more rapid disappearance of14C-DEL, and occurrence of14CO2 production in nonsterile soils, it was concluded that both biological and chemical degradation contributed to the degradation of TEL in soils, with chemical degradation being the major factor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...