Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The different growth responses under control and moderate salinity (70 mM NaCl) in relation to the carbon partitioning and sucrose metabolism in developing tomato fruits [20 days after anthesis (DAA), start of ripening and ripe stages] were studied in the cultivated tomato Lycopersicon esculentum Mill (cv. H-324-1), in the wild relative species L. cheesmanii (ac. LA-530) (hexose-accumulators), L. chmielewskii (ac. LA-1028) (sucrose-accumulator) and in two interspecific F1 hybrids (hexose-accumulators) (F1-530: H-324-1 × A-530, F1-1028: H-324-1 × A-1028). The higher salt-tolerance of the wild species and hybrids with respect to the domestic tomatoes was also observed at the fruit level because these genotypes were less affected in the assimilation of dry weight (DW) under salinity. With the exception of the wild tomatoes, the sink strength, evaluated as the dry matter accumulation rate (mg DW day−1) and the sink activity, evaluated as a relative growth rate (mg DW mg−1 day−1), were reduced during the early fruit growing period (20 DAA–start ripening). However, a total recovery of growth was registered in the salinized hybrid fruits during the late growing period (start of ripening-ripe fruits). The early reduction in sink activity in the hybrid and domestic fruits was related to a sucrose accumulation and a decrease in the total sucrolytic activity at 20 DAA, especially the cytoplasmic sucrolytic activities sucrose synthase (EC 2.4.1.13) and neutral invertase (EC 3.2.1.26). The further recovery in sink strength of the hybrid fruits was related to the maintenance of the insoluble acid invertase (EC 3.2.1.25) and the induction of the cytoplasmic sucrolytic activities, namely at the start of ripening stage, demonstrating the existence of an inverse relationship between these activities, which suggests a regulatory mechanism in order to maintain the sink capacity. The roles of different enzymes in the control of assimilate import under salinity in relation to the sucrose transport and possible regulatory mechanisms are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 110 (2000), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The different growth responses under salinity in relation to the carbon partitioning and sucrose metabolism in both sink and source organs have been studied in a salt-tolerant (cv. Pera) and in a salt-sensitive (cv. Volgogradskij) tomato genotype (Lycopersicon esculentum Mill.). After 3 weeks of salinization, the plant dry weight was reduced by 12–34% in cv. Pera and by 45–58% in cv. Volgogradskij. Photosynthesis was positively correlated to plant growth in cv. Pera but not in cv. Volgogradskij. In this salt-sensitive genotype, both photosynthesis and growth were negatively correlated with fructose, glucose and sucrose accumulation in both mature and young leaves, suggesting a blockage in their use for growth. The transient accumulation of sucrose and hexoses in the young leaves of cv. Pera was linked to increases in all soluble sucrolytic activities, mainly acid invertase (EC 3.2.1.25) and sucrose synthase (EC 2.4.1.13), which was related to sink activity and growth capacity. The sucrose-phosphate synthase activity (EC 2.4.1.14) was related to the ability of mature leaves to regulate assimilate production, accumulation and export. The salt-tolerant cv. Pera accumulated a higher amount of total carbohydrates, but cv. Volgogradskij showed the highest soluble fraction under salinity. The carbohydrate availability and the photosynthetic rate do not seem to be the first limiting factors for plant growth under saline conditions, but the different behavior observed in both genotypes concerning the distribution and use of photoassimilates could help to explain their different salt-tolerance degrees.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 101 (1997), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The effects of NaCl on endogenous free levels of the poluamines putrescine, spermi dine and spermine, and the relationships between polyamines, K+ levels and Na+ accumulation were determined in leaves of the cultivated tomato (Lycopersicon esculentum Mill.) and its wild, salt-tolerant relative L. pennellii (Correll) D' Arcy at different exposure times during a 32-day period. Both stress treatments (100 and 200 mM NaCl) decreased the levels of putrescine and spermidine, although to a different degree for the cultivated and wild tomato species. The spermine levels did not decrease with salinity in L. pennellii over the salinization period, whereas they decreased in L. esculentum, except at the first application of the 100mM NaCl treatment. In both species, the changes induced by salinity in total polyamines and K+ were very similar, with the accumulation of Na+ in the leaf being concomitant with a decrease in both total polyamines and K+. This suggests that the main role of the polyamines in the leaf tissues. In this sense, a direct relationship between total polyamines and K+, and inverse relationship between polyamines and Na+ and between K+ and Na+ were found for both species. In the short term (up to 4 days) a peculiar physiological behavior was found in L. pennellii, as the total polyamine and K+ levels decreased at 100 mM but not at 200 mM NaCl, while after this time the latter plants had values lower than those of the 100 mM NaCl-treated plants at day 11.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-203X
    Keywords: Key words: Amino acids –L. esculentum–L. pennellii– NaCl tolerance – Saline ions – Tomato interspecific hybrids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary. If in vitro culture is to be used for evaluating the salt tolerance of tomato hybrids and segregant populations in a breeding programme, it is previously necessary to get quick and reliable traits. In this work, growth and physiological responses to salinity of two interspecific hybrids between the cultivated tomato (Lycopersicon esculentum Mill) and its wild salt-tolerant species L. pennellii are compared to those of their parents. The leaf callus of the first subculture was grown on media amended with 0, 35, 70, 105, 140, 175 and 210 mM NaCl for 40 days. Relative fresh weight growth of callus in response to increased salinity in the culture medium was much greater in L. pennellii than in the tomato cultivars, and greater in the hybrids than in the wild species. Moreover, the different salt tolerance degree of hybrids was related to that of female parents. At high salt levels, only Cl– accumulation was higher in L. pennellii than in tomato cultivars, whereas in the hybrids both Cl– and Na+ accumulation were higher than in their parents. Proline increased with salinity in the callus of all genotypes; these increases were much higher in the tomato cultivars than in L. pennellii, and the hybrids showed a similar response to that of the wild species. Salt-treated callus of the tomato cultivars showed significant increases in valine, isoleucine and leucine contents compared to control callus tissue. In contrast, these amino acids in callus tissues of the wild species and hybrids showed a tendency to decrease with increasing salinity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-203X
    Keywords: Amino acids ; L. esculentum ; L. pennellii ; NaCl tolerance ; Saline ions ; Tomato interspecific hybrids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary If in vitro culture is to be used for evaluating the salt tolerance of tomato hybrids and segregant populations in a breeding programme, it is previously necessary to get quick and reliable traits. In this work, growth and physiological responses to salinity of two interspecific hybrids between the cultivated tomato (Lycopersicon esculentum Mill) and its wild salt-tolerant species L pennellii are compared to those of their parents. The leaf callus of the first subculture was grown on media amended with 0, 35, 70, 105, 140, 175 and 210 mM NaCl for 40 days. Relative fresh weight growth of callus in response to increased salinity in the culture medium was much greater in L pennellii than in the tomato cultivars, and greater in the hybrids than in the wild species. Moreover, the different salt tolerance degree of hybrids was related to that of female parents. At high salt levels, only Cl− accumulation was higher in L pennellii than in tomato cultivars, whereas in the hybrids both Cl−, and Na+ accumulation were higher than in their parents. Proline increased with salinity in the callus of all genotypes; these increases were much higher in the tomato cultivars than in L pennellii, and the hybrids showed a similar response to that of the wild species. Salt-treated callus of the tomato cultivars showed significant increases in valine, isoleucine and leucine contents compared to control callus tissue. In contrast, these amino acids in callus tissues of the wild species and hybrids showed a tendency to decrease with increasing salinity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5044
    Keywords: callus culture ; in vitro selection ; Lycopersicon esculentum ; L. pennellii ; proline
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The possibility of using in vitro shoot apex culture to evaluate salt tolerance of cultivated (Lycopersicon esculentum Mill.) and wild (Lycopersicon pennellii (Correll) D'Arcy) tomato species was determined and related to the response obtained by callus culture. Both apices and calluses were grown on media supplemented with 0, 35, 70, 105, 140, 175 and 210 mM NaCl, and growth and physiological traits were determined. Most apices of L. esculentum did not develop roots from low NaCl levels, whereas the apices of L. pennellii were able to develop roots at the different salt levels. This different degree of salt tolerance between L. esculentum and L. pennellii was not, however, clearly shown on the basis of the shoot growth of the plantlets. The callus response was similar to that shown by the rooting parameters, as callus growth in response to increased salinity was much greater in L. pennellii than in the tomato cultivar. K+decreased more and proline accumulated less with salinity in shoots of L. esculentum compared to L. pennellii, whereas the opposite response was obtained in calluses. The results obtained in this study suggest that rooting parameters are the most useful traits for rapid evaluation and screening of tomato species and segregating populations through in vitro shoot apex culture.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...