Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 25 (1978), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: SYNOPSIS. The structure and cytochemistry of spores of Myxobolus sp. from plasmodia which occur in the gill filaments of the common shiner Notropis cornutus were studied by light microscopy and by scanning and transmission electron microscopy. The thin-walled valves of the pyriform spores are thickened in the lateral sutural and apical regions. Mucous material is associated predominantly with the posterior end of many spores. The plasmodium is surrounded by a syncytial wall bounded by 2 membranes. Pinocytotic channels are formed by the inner membrane and numerous dense vesicles are pinched off at the distal ends of the channels. Sporogenesis is initiated by the envelopment of one vegetative cell by another. The larger, enveloped cell divides to form a disporous pansporoblast, which contains 2 pairs of capsulogenic and valvogenic cells and 2 binucleate sporoplasm cells. Each capsular primordium and connecting external tubule gives rise to a polar capsule which houses a helically coiled polar tubule. The apical end of each polar capsule is plugged by a stopper. The valvogenic cells surround the capsulogenic and posteriorly situated sporoplasm cells to form the spore valves. Iodinophilic (glycogen) inclusions were not seen in spores stained with iodine or Best's carmine. A darkly stained band was observed around the posterior region of most spores stained with Best's carmine. In the electron microscope large aggregates of β glycogen particles were seen in the cytoplasm of sporoplasm cells in mature spores.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 30 (1983), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The ultrastructure of the bloodstream form of Cryptobia salmositica in rainbow trout was examined during the acute phase of experimental infection. The arrangement of the major groupings of cytoplasmic microtubules originating near the basal bodies is similar to that in other bodonids. The cytostome is reinforced both by pellicular microtubules and an electron-dense plaque. Certain microtubules associated with the flagellar pocket serve as nucleating sites for pellicular microtubules. A flagellar rootlet, consisting of two parallel fibers which are bound together intermittently by electron-dense plaques, curves posteriorly from the basal body of the recurrent flagellum towards the kinetoplast. The basal body associated plaque on the kinetoplast membranes is duplicated at the same time as the basal bodies. Cytoplasmic microtubules are found in association with the plaque and the outer kinetoplastic membrane. A pulsatile vacuole, described for the first time in a hemoparasitic cryptobiid, lies adjacent to the post-flagellar pit. Smaller, interconnected vesicles of the spongiome are continuous with the pulsatile vacuole. Since a pulsatile vacuole occurs not only in free-living and ectoparasitic cryptobiids but in the hemoparasitic (=trypanoplasm) forms as well, this is no longer a character by which the genus Trypanoplasma may be separated from the genus Cryptobia. Possession of this osmoregulatory complex may allow the organism to survive outside of a host and fulfill a monoxenous life cycle, in addition to the usual heteroxenous cycle involving a leech as vector.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 28 (1981), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Fathead minnows, Pimephales promelas, raised from eggs in the laboratory, were experimentally infected with oocysts of Eimeria iroquoina from either P. promelas or the common shiner, Notropis cornutus. Within intestinal epithelial cells, trophozoites thought to be derived from the sporozoites contained a prominent electron-dense refractile body. Merozoites dedifferentiated into trophic forms by losing components of their apical complex and pellicle. The inner membrane components of the pellicle appeared discontinuous, and the micronemes became enclosed within vacuoles. Prior to merozoite formation, multinucleate meronts were limited by a single membrane. Golgi complexes were associated with the nuclei of this stage. Merozoites were formed by ectomerogony in one generation and by endomerogony in the final generation. In both forms of merogony the final nuclear division was coupled with the onset of differentiation of the merozoites and featured eccentric mitotic spindles associated with centrocones located within the nuclear envelope and with the precursors of the apical complex. A Golgi complex was closely associated with the nucleus and apical tip of the forming merozoite. Unlike other Eimeria species, the complete pellicle of the merozoites of the final asexual generation of E. iroquoina was formed within the cytoplasm of the meront, without association with the limiting membrane, thus, all pellicular components are synthesized de novo. The inner membranes of the pellicle initially appeared as longitudinal strips, each of which was associated with a pair of the 22–24 subpellicular microtubules. Mature meronts of the final asexual generation averaged 9 μm in diameter and produced 13–16 merozoites. With the exception of the internal completion of the pellicle of the final generation merozoites, the basic processes of merogony in fish Eimeria species are similar to those recorded in terrestrial hosts.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...