Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 53 (1989), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: γ-Aminobutyric acidB (GABAB) receptor recognition sites that inhibit cyclic AMP formation, open potassium channels, and close calcium channels are coupled to these effector systems by guanine nucleotide binding proteins (G proteins). These G proteins are ADP-ribosylated by islet-activating protein (IAP), also known as pertussis tokin. This process prevents receptor coupling to these G proteins. In slices of cerebral cortex and hippocampus from rat, stimulation of GABAB receptors with baclofen, a receptor agonist, also potentiates the accumulation of cyclic AMP stimulated by β-adrenergic agonists. It was unknown whether those GA-BAB receptors that potentiate the β-adrenergic response were also sensitive to IAP. IAP was injected intracerebroventric-ularly into rats to ADP-ribosylate IAP-sensitive G proteins. Four days after the IAP injection, 38% and 52% of these G proteins from cerebral cortex and hippocampus, respectively, were ADP-ribosylated by the IAP injection. In slices of both structures prepared from IAP-treated rats, the GABAB receptor-mediated potentiation of the β-adrenergic receptor response was attenuated. Thus, many GABAB receptor-mediated responses are coupled to IAP-sensitive G proteins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6903
    Keywords: Neuropeptide-Y ; NPY ; feeding ; norepinephrine ; dopamine ; serotonin ; food intake ; HPLCCD ; satiety ; hypothalamus ; push-pull perfusion ; hunger ; paraventricular nucleus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In the unrestrained rat, the hyperphagic-like ingestion of food evoked by the sustained elevation of neuropeptide-Y (NPY) in the hypothalamus was correlated with the release and turnover of monoaminergic transmitters in this structure. A single guide tube was implanted stereotaxically in the perifornical region of the hypothalamus for localized push-pull perfusion of an artificial CSF vehicle or NPY1–36 in a concentration of 10, 50, or 100 ng/1.0 μl. After the rat was fully satiated, a site reactive to NPY was perfused repeatedly at a rate of 20 μl/min for 6.0 min with an interval of 6.0–12 min elapsing between each perfusion. Samples of perfusate were analyzed by HPLC with coulometric detection for DA, HVA, DOPAC, NE, MHPG, 5-HT, and 5-HIAA. Although control perfusions were without effect on feeding or monoamine activity, NPY evoked mean cumulative intakes of food of 14±2.4, 25.6±3.0 and 26.5±3.2 g in response to 10, 50, or 100 ng/μl concentrations of NPY, respectively, over the 4.0–5.0 hr test interval. HPLC analyses showed that during feeding the release of both NE and DA was enhanced significantly. The turnover of both catecholamines likewise increased significantly as reflected by the elevated levels of MHPG, DOPAC and HVA. However, neither the basal efflux of 5-HT nor its turnover, as reflected by the output of 5-HIAA, was affected during feeding induced by NPY perfused in the hypothalamus. These results suggest that a sustained elevation of NPY in the hypothalamus causes a perturbation in the basal activity of NE and DA which are both implicated in the neuronal mechanism regulating normal eating behavior. Thus, these catecholamine neurotransmitters are envisaged to comprise an intermediary step in the functional role played by NPY in the hypothalamus in integrating the control of energy metabolism and caloric intake.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...