Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd.
    Journal of neurochemistry 73 (1999), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract : EAAC1-mediated glutamate transport concentrates glutamate across plasma membranes of brain neurons and epithelia. In brain, EAAC1 provides a presynaptic uptake mechanism to terminate the excitatory action of released glutamate and to keep its extracellular concentration below toxic levels. Here we report the effect of well known anxiolytic compounds, benzodiazepines, on glutamate transport in EAAC1-stably transfected Chinese hamster ovary (CHO) cells and in EAAC1-expressing Xenopus laevis oocytes. Functional properties of EAAC1 agreed well with already reported characteristics of the neuronal high-affinity glutamate transporter (Km D-Asp, CHO cells : 2.23 ± 0.15 μM ; Km D-Asp, oocytes : 17.01 ± 3.42 μM). In both expression systems, low drug concentrations (10-100 μM) activated substrate uptake (up to 200% of control), whereas concentrations in the millimolar range inhibited (up to 50%). Furthermore, the activation was more pronounced at low substrate concentrations (1 μM), and the inhibition was attenuated. The activity of other sodium cotransporters such as the sodium/D-glucose cotransporter SGLT1, stably transfected in CHO cells, was not affected by benzodiazepines. In electrophysiological studies, these drugs also failed to change the membrane potential of EAAC1-expressing Xenopus laevis oocytes. These results suggest a direct action on the glutamate transporter itself without modifying the general driving forces. Thus, in vivo low concentrations of benzodiazepines may reduce synaptic glutamate concentrations by increased uptake, providing an additional mechanism to modulate neuronal excitability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Surface expression of the glial glutamate transporter EAAT1 is stimulated by insulin-like growth factor 1 through activation of phosphatidylinositol-3-kinase. Downstream targets include serum and glucocorticoid-sensitive kinase isoforms SGK1, SGK2 and SGK3, and protein kinase B. SGK1 regulates Nedd4-2, a ubiquitin ligase that prepares cell membrane proteins for degradation. To test whether Nedd4-2, SGK1, SGK3 and protein kinase B regulate EAAT1, cRNA encoding EAAT1 was injected into Xenopus oocytes with or without additional injection of wild-type Nedd4-2, constitutively active S422DSGK1, inactive K127NSGK1, wild-type SGK3 and/or constitutively active T308D,S473DPKB. Glutamate induces a current in Xenopus oocytes expressing EAAT1, but not in water-injected oocytes, which is decreased by co-expression of Nedd4-2, an effect reversed by additional co-expression of S422DSGK1, SGK3 and T308D,S473DPKB, but not K127NSGK1. Site-directed mutagenesis of the SGK1 phosphorylation sites in the Nedd4-2 protein (S382A,S468ANedd4-2) and in the EAAT1 protein (T482AEAAT1, T482DEAAT1) significantly blunts the effect of S422DSGK1. Moreover, the current is significantly larger in T482DEAAT1- than in T482AEAAT1-expressing oocytes, indicating that a negative charge mimicking phosphorylation at T482 increases transport. The experiments reveal a powerful novel mechanism that regulates the activity of EAAT1. This mechanism might participate in the regulation of neuronal excitability and glutamate transport in other tissues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...