Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1420-9071
    Keywords: Quantitation of intracellular vanadium (free and bound) ; nuclear sequestration of vanadium ; nuclear microscopy ; cell cycle phase-specific evaluation of sub-2N DNA in flow cytometry ; programmed cell death ; autophagic autodigestion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Very little is known about the modulation of vanadium accumulation in cells, although this ultratrace element has long been seen as an essential nutrient in lower life forms, but not necessarily in humans where factors modulating cellular uptake of vanadium seem unclear. Using nuclear microscopy, which is capable of the direct evaluation of free and bound (total) elemental concentrations of single cells we show here that an NH4Cl acidification prepulse causes distinctive accumulation of vanadium (free and bound) in human Chang liver cells, concentrating particularly in the nucleus. Vanadium loaded with acidification but leaked away with realkalinization, suggests proton-dependent loading. Vanadyl(4), the oxidative state of intracellular vanadium ions, is known to be a potent source of hydroxyl free radicals (OH.). The high oxidative state of nuclei after induction of vanadyl(4) loading was shown by the redox indicator methylene blue, suggesting direct oxidative damage to nuclear DNA. Flow cytometric evaluation of cell cycle phase-specific DNA composition showed degradation of both 2N and 4N DNA phases in G1, S and G2/M cell cycle profiles to a solitary 1N DNA peak, in a dose-dependent manner, effective from micromolar vanadyl(4) levels. This trend was reproduced with microccocal nuclease digestion in a time response, supporting the notion of DNA fragmentation effects. Several other approaches confirmed fragmentation occurring in virtually all cells after 4 mM V(4) loading. Ultrastructural profiles showed various stages of autophagic autodigestion and well defined plasma membrane outlines, consistent with programmed cell death but not with necrotic cell death. Direct intranuclear oxidative damage seemed associated with the induction of mass suicide in these human Chang liver cells following vanadium loading and nuclear sequestration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Methods in cell science 15 (1993), S. 199-203 
    ISSN: 1573-0603
    Keywords: cultured cell microanalysis ; cold-stretched Pioloform substrate ; film-stripping in water ; Permount-coated target holder ; serum-prepulsed cell plating
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Accurate microanalysis of elemental concentrations and distributions especially with regard to trace elements have been difficult because the concentrations are usually below the threshold of the more commonly used electron microprobes. Cultured cell microanalysis with the aid of the nuclear microscope provides accurate quantitation of minor and trace elements, including variations when subjected to modulations and perturbations. We show here our highly reproducible technique of preparing monolayer cells for nuclear microscopy, using thin Pioloform supports stretched by cold treatment over dry ice. Cells are grown directly on these Permount-anchored Pioloform thin films using serum-prepulsed plating.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 240 (1994), S. 456-468 
    ISSN: 0003-276X
    Keywords: Flow cytometric analysis of BCECF ratios ; Neutral red uptake and propidium iodide-DNA bindings ; Ao apoptotic peak ; two million mol.wt dextrans ; Macrophagic internalizations ; Large channel endocytosis ; Image analysis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Background: The early stages of apoptosis (programmed cell death) are said to be characterized by internucleosomal DNA fragmentation and “condensation of the cytoplasm” in which cells round up, detach, and increase in density. We studied the causation of apoptotic rounding.Methods: Human Chang liver cells in normal monolayer culture were compared with apoptotic counterparts derived from serum growth factor deprivation. Cell-by-cell analysis using the Coulter EPICS PROFILE II flow cytometer studied (1) the cell cycle from propidium iodide-DNA bindings, (2) uptake of neutral red (NR) dye, a viable cell marker, and (3) cytosolic pH (pHi) modulations from 2′,7′-bis(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF) fluorescence ratios with NH4Cl prepulsing and forward scatter bitmapping of cell surface area. Morphometric studies were done in the Quantimet 570 image analyser. Uptake of trypan blue, neutral red, and 2 million mol.wt fluoresceinated dextrans was studied by light microscopy. Cytological profiles were examined in light microscopy and transmission and scanning electron microscopy.Results: Three days of serum growth factor deprivation caused confluent flat substrate-attached cells to retract and round up, tethering tenuously to the substrate via thin microvillus attachments only. Ninety percent of cell surface area was lost with this flat-to-round change. There was high trypan blue staining with total loss of proliferative potential, and the entire genome was just fragmented DNA making up the solitary Ao (apoptotic) peak in cell cycle profiles. However, these rounded apoptotic cells also internalized huge 2 million mol.wt dextran particles and impermeant neutral red which is an established viable cell marker. The rounded apoptotic cells had an intensely acidic (pH 5.6) cytosol and therefore a steep [H+]i/[H+]o gradient promoting proton extrusion. The pHi upshifted dynamically upon acidification, recovering and even exceeding resting level by a whole pH unit. Surface area reduction occurred concomitantly in real time with pHi upshifts in these apoptotic cells. Acidification and recovery in apoptotic cells also produced enhanced uptake of neutral red. Cytological profiles showed abundant large endocytic channels and endosomes in the rounded apoptotic cells.Conclusion: Gross surface area reduction with evidence of distinctive endocytic activity including uptake of huge 2 million mol.wt dextran particles suggested large channel endocytic internalization as a causal factor in apoptotic rounding, in common with rounding in M-phase and interphase cells with pHi upshifting where concomitant surface area reduction and uptake of impermeant particles were similarly demonstrable. The reduction in size of the cell envelope, together with consequential concentration pressures, could account for the observed rise in cell density and shrinkage in cell size. As a symptom of continual pHi upshifting, apoptotic rounding appears to be a recovery-associated response rather than a direct consequence of the disruptive forces causing its death. © 1994 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...