Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The aim of the present study was to determine whether endogenous amino acids are released from type-1 and type-2 astrocytes following non-N-methyl-D-aspartate (NMDA) receptor activation and whether such release is related to cell swelling. Amino acid levels and release were measured by HPLC in secondary cultures from neonatal rat cortex, highly enriched in type-1 or type-2 astrocytes. The following observations were made. (a) The endogenous level of several amino acids (glutamate, alanine, glutamine, asparagine, taurine, serine, and threonine) was substantially higher in type-1 than in type-2 astrocytes. (b) The spontaneous release of glutamine and taurine was higher in type-1 than in type-2 astrocytes; that of other amino acids was similar. (c) Exposure of type-2 astrocyte cultures to 50 μM kainate or quisqualate doubled the release of glutamate and caused a lower, but significant increase in that of aspartate, glycine, taurine, alanine, serine (only in the case of kainate), and glutamine (only in the case of quisqualate). These effects were reversed by the antagonist CNQX. (d) Exposure of type-1 astrocyte cultures to 50–200 μM kainate or 50 μM quisqualate did not affect endogenous amino acid release, even after treating the cultures with dibutyryl cyclic AMP. (e) Exposure of type-1 or type-2 astrocyte cultures to 50 mM KCl (replacing an equimolar concentration of NaCl) enhanced the release of taurine 〉 glutamate 〉 aspartate. The effect was somewhat more pronounced in type-2 than in type-1 astrocytes. Veratridine (50 μM) did not cause any increase in amino acid release. (f) The release of amino acids induced by high [K+] appeared to be related to cell swelling, in both type-1 and type-2 astrocytes. Swelling and K+-induced release were somewhat higher in type-2 than in type-1 astrocytes. In contrast, neither kainate nor quisqualate caused any appreciable increase in cell volume. It is concluded that non-NMDA receptor agonists stimulate the release of several endogenous amino acids (some of which are neuroactive) from type-2 but not from type-1 astrocytes. The effect does not seem to be related to cell swelling, which causes a different release profile in both type-1 and type-2 astrocytes. The absence of kainate- and quisqualate-evoked release in type-1 astrocytes suggests that the density of non-NMDA receptors in this cell type is very low.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Amino acid release studies were performed by an HPLC procedure using differentiated rat cerebellar granule cell cultures. Kainic acid (KA; 50 μM) caused an increase (about threefold) in the release of endogenous glutamate and a lesser, but statistically significant, increase in the release of glutamine, glycine, threonine, taurine, and alanine. Quisqualic acid (QA) and, to a lesser degree, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (both 50 μM) enhanced the release of the following amino acids in the order glutamate 〉 aspartate ≥ taurine, whereas the release of other amino acids was either unaffected or affected in a statistically nonsignificant way. The release of glutamate induced by KA was partially (43%) Ca2+ dependent. The other release-inducing effects of KA and QA were not Ca2+ dependent. In all cases, the evoked release could be prevented by the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 6-cyano-2,3-hydroxy-7-nitroquinoxaline, and thus appeared to be receptor mediated. NMDA (5 and 50 μM) had no releaseinducing activity. The KA-, QA-, and AMPA-evoked release of newly synthesized [3H]glutamate and [3H]aspartate (formed in the cells exposed to [3H]glutamine) was very similar to the evoked release of endogenous glutamate and aspartate. On the other hand, the release of preloaded D-[3H]aspartate (purified by HPLC in the various fractions analyzed, before radioactivity determination) induced by 50 μM KA was twice as high as that of endogenous glutamate. In the case of high [K+] depolarization, in contrast, the release of preloaded D-[3H]aspartate was ∼30% lower than that of endogenous glutamate. The reasons for the above differences in the susceptibility of the various glutamate pools to being released may be the following: Non-NMDA receptor agonists cause essentially a carrier-mediated efflux of glutamate from a cytoplasmic pool that is preferentially labeled by exogenous D-[3H]aspartate, whereas depolarization with high [K+] causes mainly an exocytotic-like release from a vesicular pool to which exogenous D-[3H]aspartate has a more limited access.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Journal of neurochemistry 74 (2000), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: We studied the modulation by protein kinase C (PKC) of the cyclic AMP (cAMP) accumulation induced by prostaglandin (PG) E2 in rat neonatal microglial cultures. Short pretreatment of microglia with phorbol 12-myristate 13-acetate (PMA) or 4β-phorbol 12,13-didecanoate, which activate PKC, but not with the inactive 4α-phorbol 12,13-didecanoate, substantially reduced cAMP accumulation induced by 1 μM PGE2. The action of PMA was dose and time dependent, and the maximal inhibition (∼85%) was obtained after 10-min preincubation with 100 nM PMA. The inhibitory effect of PMA was mimicked by diacylglycerol and was prevented by the PKC inhibitor calphostin C. As PMA did not affect isoproterenol- or forskolin-stimulated cAMP accumulation, we investigated whether activation of PKC decreased cAMP production by acting directly at PGE2 EP receptors. Neither sulprostone (10-9-10-5M), a potent agonist at EP3 receptors (coupled to adenylyl cyclase inhibition), nor 17-phenyl-PGE2 (10-6-10-5M), an agonist of EP1 receptors, modified cAMP accumulation induced by forskolin. On the contrary, 11-deoxy-16, 16-dimethyl PGE2, which does not discriminate between EP2 and EP4 receptors, both coupled to the activation of adenylyl cyclase, and butaprost, a selective EP2 agonist, induced a dose-dependent elevation of cAMP that was largely reduced by PMA pretreatment, as in the case of PGE2. These results indicated EP2 receptors as a possible target of PKC and suggest that PKC-activating agents present in the pathological brain may prevent the cAMP-mediated microglia-deactivating function of PGE2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 77 (2001), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We have studied the modulation of cyclic AMP (cAMP) accumulation by the human immunodeficiency virus type 1 (HIV 1) protein Tat in microglia and astrocyte cultures obtained from neonatal rat brain. Pretreatment of microglia with recombinant Tat resulted in a dose- and time-dependent decrease of cAMP accumulation induced by subsequent exposure to isoproterenol (1 µm). The inhibitory action of 100 ng/mL Tat approached 50% after 4 h of preincubation and reached a maximum of 70% after 24 h. The Tat-induced time- and dose-dependent decrease of cAMP accumulation was observed also when microglial cultures were stimulated with the adenylyl cyclase activator forskolin (100 µm). In both cases, Tat inhibitory action was 70% reverted by a specific monoclonal anti-Tat antibody, but was not prevented either by the phosphodiesterase inhibitor 3-isobutyl-1-methyl-xantine (100 µm) or by a 16-h pretreatment of microglial cultures with the Gi protein inhibitor pertussis toxin (10 ng/mL). All these results suggested that the viral protein acts at a step of the cAMP transduction pathway other than receptors, G proteins and phosphodiesterases. The target of Tat appeared to be adenylyl cyclase, whose activity was markedly reduced (up to 60%) in membranes prepared from Tat-treated microglial cells, both in basal conditions and after stimulation with isoproterenol and forskolin. The inability of the competitive inhibitor of nitric oxide synthase NG-monometyl-l-arginine (20 and 200 µm) to revert Tat action on forskolin-induced cAMP accumulation, and of two potent nitric oxide donors, PAPA and DETA (0.1–2 mm), to alter forskolin-induced cAMP accumulation, excluded an involvement of nitric oxide in Tat-induced adenylyl cyclase inhibition. On the contrary, two inhibitors of nuclear factor κB activation, N-tosyl-l-phenylalanine chloromethyl ketone (10 µm) and SN50 (25 µm), markedly prevented the reduction of forskolin-evoked cAMP accumulation by Tat, suggesting a possible role for this nuclear transcriptional factor in the regulation of adenylyl cyclase by Tat in microglia. This assumption was strengthened by the ability of lipopolysaccharide (100 ng/mL, 4 h) to mimic the inhibitory effect of the viral protein. Conversely, astrocyte cAMP accumulation was unaffected by the viral protein, as tested at various concentrations and time points. Finally, Tat inhibition of microglial adenylyl cyclase was not due to non-specific cytotoxicity. As cAMP has been reported to exert a neuroprotective role in several in vivo and in vitro models of brain pathologies, and microglia is believed to mediate Tat-induced neurotoxicity, these results suggest that the ability of Tat to inhibit cAMP synthesis in microglia may contribute to neuronal degeneration and cell death associated with HIV infection.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 69 (1997), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: We studied the regulation of cyclic AMP responses by protein kinase C (PKC) in purified astrocyte and microglia cultures obtained from the neonatal rat brain. In astrocytes, a 10-min treatment with the phorbol esters phorbol 12-myristate 13-acetate (PMA) and 4β-phorbol 12,13-didecanoate (4β-PDD) (but not with 4α-PDD) or with diacylglycerol, which activate PKC, dose-dependently enhanced cyclic AMP accumulation induced by the β-adrenergic agonist isoproterenol and the adenylyl cyclase activator forskolin. Such enhancement was prevented by the PKC inhibitors staurosporine and calphostin-C and by down-regulation of PKC and was not related to activation of membrane receptors or Gs proteins or to inhibition of Gi proteins or phosphodiesterases. Instead, the activity of adenylyl cyclase doubled in PMA-treated astrocytes. In microglia, a 10-min treatment with PMA or PKC inhibitors did not affect cyclic AMP accumulation, whereas longer treatments with PMA or 4β-PDD (but not 4α-PDD) inhibited the cyclic AMP response in a time- and dose-dependent manner. Such inhibition was mimicked by staurosporine and calphostin-C. Also, in the case of microglia, the modulation of cyclic AMP responses appeared to occur at the level of adenylyl cyclase, and not elsewhere in the cyclic AMP cascade. The inhibition of microglial adenylyl cyclase was apparently not due to aspecific cytotoxicity. A differential regulation of adenylyl cyclase by PKC in astrocytes and microglia may help to explain qualitative and quantitative differences in the response of these cells to various physiological and pathological stimuli.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-6903
    Keywords: Amino acid release ; cerebellar culture ; granule cells ; glutamate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Endogenous amino acid release was examined in rat cerebellar primary cultures comprising more than 95% of glutamatergic granule cells. Eighteen amino acids were determined in the cell extracts and in the release fractions by high performance liquid chromatography, using precolumn derivatization witho-phthaldialdehyde and separation on a reverse-phase column using a multi-step gradient system of two solvents (0.1 M Na+acetate, pH 7.2/methanol: tetrahydrofuran, 97:3). The fluorimetric response was linear, at least in the range of 2–162 pmol, for all the amino acids analysed, with a detection limit of 1 pmole. We observed a good reproducibility in within-assay and between-assay coefficients of variation of the retention times and fluorescence yield. When cultured granule cells were exposed to the excitatory amino acid receptor agonist quisqualic acid (50 μM), we observed a net increase in the release of glutamate (3 fold over the baseline) and a smaller increase in that of aspartate (2 fold) and taurine (1.6 fold). Other amino acids were not significantly affected. GABA levels were below detection limits, due to the minimal number of GABAergic neurons present in the cultures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-6830
    Keywords: vimentin ; glial fibrillary acidic protein ; cyclic AMP ; myristolyated alanine-rich kinase C substrate (MARCKS) protein ; protein kinases ; phorbol-12-myristate-13-acetate (PMA)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary 1. We have previously shown that acute exposure to the HIV coat protein gp120 interferes with the β-adrenergic regulation of astroglial and microglial cells (Leviet al., 1993). In particular, exposure to 100 pM gp120 for 30 min depressed the phosphorylation of vimentin and glial fibrillary acidic protein (GFAP) induced by isoproterenol in rat cortical astrocyte cultures. In the present study we have extended our analysis on the effects of gp120 on astroglial protein phosphorylation. 2. We found that chronic (3-day) treatment of the cells with 100 pM gp120 before exposure to isoproterenol was substantially more effective than acute treatment in depressing the stimulatory effect of the β-adrenergic agonist on vimentin and GFAP phosphorylation. 3. Even after chronic treatment with gp120, no differences were found in the levels and solubility of these proteins. 4. Besides stimulating the phosphorylation of intermediate filament proteins, isoproterenol inhibited the incorporation of32P into a soluble acidic protein of 80,000M r , which was only minimally present in Triton X-100-insoluble extracts. 5. Treatment of astrocytes with a phorbol ester or exposure to3H-myristic acid indicated that the acidic 80,000M r protein is a substrate for protein kinase C (PKC) and is myristoylated, thus suggesting that it is related to the MARCKS family of PKC substrates. 6. Acute (30-min) treatment with 100 pM gp120 totally prevented the inhibitory effect of isoproterenol on the phorphorylation of the 80,000M r MARCKS-like protein. 7. Our studies corroborate the hypothesis that viral components may contribute to the neuropathological changes observed in AIDS through the alteration of signal transduction systems in glial cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...