Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4951
    Keywords: Molecular design ; Bioactive conformation ; Molecular superposition ; Binding site models ; Pattern recognition ; Clique detection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary In the absence of a 3D structure of the target biomolecule, to propose the 3D requirements for a small molecule to exhibit a particular bioactivity, one must supply both a bioactive conformation and a superposition rule for every active compound. Our strategy identifies both simultaneously. We first generate and optimize all low-energy conformations by any suitable method. For each conformation we then use ALAD-DIN to calculate the location of points to be considered as part of the superposition. These points include atoms in the molecule and projections from the molecule to hydrogen-bond donors and acceptors or charged groups in the binding site. These positions and the relative energy of each conformation are the input to our new program DISCO. It uses a clique-detection method to find superpositions that contain a least one conformation of each molecule and user-specified numbers of point types and chirality. DISCO is fast; for example, it takes about 1 min CPU to propose pharmacophores from 21 conformations of seven molecules. We typically run DISCO several times to compare alternative pharmacophore maps. For D2 dopamine agonists DISCO shows that the newer 2-aminothiazoles fit the traditional pharmacophore. Using site points correctly identifies the bioactive enantiomers of indoles to compare with catechols whereas using only ligand points leads to selecting the inactive enantiomer for the pharmacophore map. In addition, DISCO reproduces pharmacophore maps of benzodiazepines in the literature and proposes subtle improvements. Our experience suggests that clique-detection methods will find many applications in computational chemistry and computer-assisted molecular design.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 39 (1996), S. 615-618 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: No abstract.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...