Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9931
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The incurable neurodegenerative disorder, Huntington's disease (HD), is caused by an expanded, unstable CAG repeat encoding a stretch of polyglutamine in a 4p16.3 gene (HD) of unknown function. Near the CAG repeat is a polyproline-encoding CCG repeat that shows more limited allelic variation. The mouse homologue,Hdh, has been mapped to chromosome 5, in a region devoid of mutations causing any comparable phenotype. We have isolated overlapping cDNAs from theHdh gene and compared their sequences with the human transcript. The consensus mouse coding sequence is 86% identical to the human at the DNA level and 91% identical at the protein level. Despite the overall high level of conservation,Hdh possesses an imperfect CAG repeat encoding only seven consecutive glutamines, compared to the 13–36 residues that are normal in man. Although no evidence for polymorphic variation of the CAG repeat was seen, a nearby CCG repeat differed in length by one unit between several strains of laboratory mouse andMus spretus. The absence of a long CAG repeat in the mouse is consistent with the lack of a spontaneous mouse model of HD. The information presented concerning the sequence of the mouse gene should facilitate attempts to create such a model.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9931
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat encoding a tract of consecutive glutamines near the amino terminus of huntingtin, a large protein of unknown function. It has been proposed that the expanded polyglutamine stretch confers a new property on huntingtin and thereby causes cell and region-specific neurodegeneration. Genotype-phenotype correlations predict that this novel property appears above a threshold length (∼38 glutamines), becomes progressively more evident with increasing polyglutamine length, is completely dominant over normal huntingtin and is not appreciably worsened by a double genetic dose in HD homozygotes. Recently, an amino terminal fragment of mutant huntingtin has been found to form self-initiated fibrillar aggregates in vitro. We have tested the capacity for aggregation to assess whether this property matches the criteria expected for a fundamental role in HD pathogenesis. We find that that in vitro aggregation displays a threshold and progressivity for polyglutamine length remarkably similar to the HD disease process. Moreover, the mutant huntingtin amino terminus is capable of recruiting into aggregates normal glutamine tract proteins, such as the amino terminal segments of both normal huntingtin and of TATA-binding protein (TBP). Our examination of in vivo aggregates from HD post-mortem brains indicates that they contain an amino terminal segment of huntingtin of between 179 and 595 residues. They also contain non-huntingtin protein, as evidenced by immunostaining for TBP. Interestingly, like the in vitro aggregates, aggregates from HD brain display Congo red staining with green birefringence characteristic of amyloid. Our data support the view that the expanded polyglutamine segment confers on huntingtin a new property that plays a determining role in HD pathogenesis and could be a target for treatment. Moreover, the new property might have its toxic consequences by interaction with one or more normal polyglutamine-containing proteins essential for the survival of target neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...