Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Graefe's archive for clinical and experimental ophthalmology 237 (1999), S. 976-983 
    ISSN: 1435-702X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  · Background: The fate of indigestible material injected into the subretinal space of rats was investigated. · Methods: The non-toxic dye Monastral Blue (MB), which cannot be digested within the lysosomal compartment, was injected transsclerally into the subretinal space of Long Evans and Wistar rats. After 5 and 12 days respectively the eyes were enucleated and examined by light and electron microscopy. Cryo sections were made of eyes 5 days after MB injection for the application of immunohistochemical techniques using markers for epithelial cells (cytokeratin) and macrophages (ED 1). · Results: Retina, choroid and sclera were not altered in their morphology in the circumference of the MB-containing bubble generated by subretinal injection. After both 5 and 12 days no injected material was found extracellularly in the subretinal space. Especially high amounts of MB were found, in particular 5 days after injection, in lysosomes and melanosomes of RPE cells as well as in cells between choroidal melanocytes. Cells containing MB were seen in contact with choroidal and scleral blood vessels. These MB-containing cells in the choroid and in the sclera were positive for macrophage antibodies. · Conclusion: Sub-retinal injection was confirmed as a suitable method for placing fluids into the subretinal space without affecting the morphology of the retina. Subretinal injected material was shown to be incorporated into lysosomes and melanosomes of RPE cells. The injected material was subsequently transported through Bruch’s membrane to be finally removed from the eye via choroidal and scleral veins, the process involving macrophages.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Graefe's archive for clinical and experimental ophthalmology 237 (1999), S. 685-690 
    ISSN: 1435-702X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  · Background: Lipid peroxidation is considered to be a prominent feature of retinal degeneration and has also been proposed to be involved in the pathogenesis of age-related macular degeneration. Melanin protects against lipid peroxidation and takes part in the detoxification of lipid peroxides (LP). LP can be ultrastructurally detected as benzidine-reactive substances (BRS) using tetramethylbenzidine (TMB). Albino mice lack melanin. In the present study, LP were localized as BRS in the eyes of albino and pigmented mice. · Methods: Eye cups of an albino mouse lineage and of wild-type mice were fixed with 2% glutaraldehyde, incubated with 0.5 mg/ml TMB and embedded for electron microscopy. · Results: BRS were detected in the eyes of albino mice, but no reaction product was seen in pigmented eyes. BRS located in the retinal pigment epithelium (RPE) and in the choroid of the albino mouse; no BRS were found in intact rod outer segments (ROS). · Conclusion: The lack of melanin in albino mice is associated with a higher level of lipid peroxidation in RPE and choroid. Melanin seems to protect against LP in RPE and choroid. A lack of melanin is not associated with lipid peroxidation in intact ROS. The present investigation demonstrates the significance of melanin in protection against LP in RPE and choroid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...