Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of computational neuroscience 9 (2000), S. 271-291 
    ISSN: 1573-6873
    Keywords: rhythms ; synchrony ; cortex ; alpha ; attention
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Medicine , Physics
    Notes: Abstract Neocortical networks of excitatory and inhibitory neurons can display alpha(α)-frequency rhythms when an animal is in a resting or unfocused state. Unlike some γ- and β-frequency rhythms, experimental observations in cats have shown that these α-frequency rhythms need not synchronize over long cortical distances. Here, we develop a network model of synaptically coupled excitatory and inhibitory cells to study this asynchrony. The cells of the local circuit are modeled on the neurons found in layer V of the neocortex where α-frequency rhythms are thought to originate. Cortical distance is represented by a pair of local circuits coupled with a delay in synaptic propagation. Mathematical analysis of this model reveals that the h and T currents present in layer V pyramidal (excitatory) cells not only produce and regulate the α-frequency rhythm but also lead to the occurrence of spatial asynchrony. In particular, these inward currents cause excitation and inhibition to have nonintuitive effects in the network, with excitation delaying and inhibition advancing the firing time of cells; these reversed effects create the asynchrony. Moreover, increased excitatory to excitatory connections can lead to further desynchronization. However, the local rhythms have the property that, in the absence of excitatory to excitatory connections, if the participating cells are brought close to synchrony (for example, by common input), they will remain close to synchrony for a substantial time.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6873
    Keywords: somatosensory cortex ; vibrissae ; cortical circuits ; local networks ; computer simulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Medicine , Physics
    Notes: Abstract Beginning from a biologically based integrate and fire model of a rat whisker barrel, we employ semirigorous techniques to reduce the system to a simple set of equations, similar to the Wilson-Cowan equations, while retaining the ability for both qualitative and quantitative comparisons with the biological system. This is made possible through the clarification of three distinct measures of population activity: voltage, firing rate, and a new term called synaptic drive. The model is activated by prerecorded neural activity obtained from thalamic “barreloid” neurons in response to whisker stimuli. Output is produced in the form of population PSTHs, one each corresponding to activity of spiny (excitatory) and smooth (inhibitory) barrel neurons, which is quantitatively comparable to PSTHs from electrophysiologically studied regular-spike and fast-spike neurons. Through further analysis, the model yields novel physiological predictions not readily apparent from the full model or from experimental studies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...